Skip to main content
Log in

Cross-layer optimization with MIPv6-based multiple mobile routers for cognitive networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

To allow secondary and primary concurrent transmissions achieving the increment of optimal mobile network performance in heterogeneous cognitive networks, this paper proposes a cross-layer optimization framework with a distributed cooperative MIPv6-based multiple mobile routers using adaptive opportunistic route optimization entitled Mobile IPv6 Route Optimization for Cognitive radio networks (MIROC) protocol. A gripping slant of MIROC protocol is the benefit to develop mobile cognitive routers based on MIPv6. The proposed protocol is elaborated in details from angular RO and multiangular routing which can be utilized in practical network deployment. The performance in M/M/n and M/M/∞ Queue and evaluation of cognitive mobile Network with multiple mobile routers using stochastic process in Markov chain model are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Su, H., & Zhang, X. (2008). Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks. IEEE Journal on Selected Areas in Communications, 26(1), 118–129.

    Article  Google Scholar 

  2. Chang, Y.-J., Chien, F.-T., & Jay Kuo, C.-C. (2007). Cross-layer QoS analysis of opportunistic OFDM-TDMA and OFDMA networks. IEEE Journal on Selected Areas in Communications, 25(4), 657–666.

    Article  Google Scholar 

  3. Song, G., & Li, Y. G. (2005). Cross-layer optimization for OFDM wireless network part I: theoretical framework. IEEE Transactions Wireless Communications, 4(2), 614–624.

    Article  MathSciNet  Google Scholar 

  4. Luo, C., Yu, F. R., Ji, H., & Leung, V. C. M. (2010). Cross-layer design for TCP performance improvement in cognitive radio networks. Vehicular Technology, IEEE Transactions on, 59(5), 2485–2495.

    Article  Google Scholar 

  5. Calderon, M., Bernardos, C. J., Bagnulo, M., Soto, I., & de la Oliva, A. (2006). Design and experimental evaluation of a route optimization solution for NEMO. IEEE Journal on Selected Areas in Communications, 24(9), 1702–1716.

    Article  Google Scholar 

  6. Md. Shohrab, H., Atiquzzaman, M., & Ivancic, W.D. (2011) Survivability evaluation of NEMO with multiple mobile routers. GLOBECOM Workshops, 2011 IEEE, pp. 524–528.

  7. Wang, X., Li, H., & Lin, H. (2011). A new adaptive OFDM system with precoded cyclic prefix for dynamic cognitive radio communications. IEEE Journal on Selected Areas in Communications, 29(2), 431–442.

    Article  MathSciNet  Google Scholar 

  8. Andrews, M., Capdevielle, V., Feki, A. & Gupta, P. (2010) Autonomous spectrum sharing for mixed LTE femto and macro cells deployments, In Proceedings IEEE INFOCOM, San Diego, USA.

  9. Cheng, S.-M., Ao, W. C., Tseng, F.-M., & Chen, K.-C. (2012). Design and analysis of downlink spectrum sharing in two-tier cognitive femto networks. IEEE Transactions on Vehicular Technology, 61(5), 2194–2207.

    Article  Google Scholar 

  10. Alexander W. Min, Kyu-Han Kim, Jatinder Pal Singh, and Kang G. Shin (2011) Opportunistic spectrum access in mobile cognitive radios. In Proceedings IEEE INFOCOM, Shanghai, pp. 2993–3001.

  11. Huang, S., Liu, X., & Ding, Z. (2009). Optimal transmission strategies for dynamic spectrum access in cognitive radio networks. IEEE Transactions on Mobile Computing, 8(12), 1636–1648.

    Article  Google Scholar 

  12. Lien, S.-Y., Chen, K.-C., Liang, Y.-C., & Lin, Y. (2014). Cognitive radio resource management for future cellular networks. IEEE Wireless Communications, 21(1), 70–79.

    Article  Google Scholar 

  13. Lin, S.-C., & Chen, K.-C. (2014). Improving spectrum efficiency via in-network computations in cognitive radio sensor networks. IEEE Transactions on Wireless Communications, 13(3), 1222–1234.

    Article  Google Scholar 

  14. Shahriar, A.Z.M., Atiquzzaman, M., & Ivancic, W. (2010) Performance of prefix delegation-based route optimization schemes: intra mobile network case. In IEEE International Conference on Communication, Cape Town, pp. 1–5.

  15. Chen, P.-Y., Cheng, S.-M., Ao, W.C., & Chen, K.-C. (2011) Multi-path routing with end-to-end statistical QoS provisioning in underlay cognitive radio networks. In Proceedings 2011 IEEE INFOCOM Workshop on Cognitive and Cooperative Networks, Shanghai, pp. 7–12.

  16. Pinto, P. C., Giorgetti, A., Win, M. Z., & Chiani, M. (2009). A stochastic geometry approach to coexistence in heterogeneous wireless networks. IEEE Journal on Selected Areas in Communications, 27(7), 1268–1282.

    Article  Google Scholar 

  17. López-Pérez, D., et al. (2013). On distributed and coordinated resource allocation for interference mitigation in self-organizing LTE networks. IEEE/ACM Transactions on Networking, 21(4), 1145–1158.

    Article  Google Scholar 

  18. Byun, S.-S., et al. (2014). Computation of an equilibrium in spectrum markets for cognitive radio networks. IEEE Transactions on Computers, 63(2), 304–316.

    Article  MathSciNet  Google Scholar 

  19. López-Pérez, D., et al. (2014). Power minimization based resource allocation for interference mitigation in OFDMA femtocell networks. IEEE Journal on Selected Areas in Communications, 32(2), 333–344.

    Article  Google Scholar 

  20. Jiang, T., et al. (2012). QoE-driven channel allocation schemes for multimedia transmission of priority-based secondary users over cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(7), 1215–1224.

    Article  Google Scholar 

  21. Youssef, M., et al. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  22. Khan, M. A., et al. (2012). Game dynamics and cost of learning in heterogeneous 4G networks. IEEE Journal on Selected Areas in Communications, 30(1), 198–213.

    Article  Google Scholar 

  23. Chakravarthy, V., et al. (2009). Novel overlay/underlay cognitive radio waveforms using SD-SMSE framework to enhance spectrum efficiency-part i: Theoretical framework and analysis in AWGN channel. IEEE Transactions on Communications, 57(12), 3794–3804.

    Article  Google Scholar 

Download references

Conflict of interest

Author Dan Ye has received an IEEE INFOCOM Achievement Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, D. Cross-layer optimization with MIPv6-based multiple mobile routers for cognitive networks. Wireless Netw 22, 193–209 (2016). https://doi.org/10.1007/s11276-015-0967-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0967-3

Keywords

Navigation