Skip to main content
Log in

Channel capacity in fading environment with CSI and interference power constraints for cognitive radio communication system

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we have numerically computed the channel capacity in fading environment under average interference power constraint with two different adaptation policies for the spectrum sharing in cognitive radio communication systems such as power adaptation and rate and power adaptation for multilevel quadrature amplitude modulation format. However, the small scale fading effect over the transmit power of the secondary transmitter is explored. The rate and power of secondary transmitter is varied based upon the sensing information and channel state information of the secondary link. The channel capacity is maximized for these two policies by considering the Lagrange optimization problem for average interference power constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kruys, J., & Qian, L. (2011). Sharing RF spectrum with commodity wireless technologies. New York: Springer.

    Book  Google Scholar 

  2. Federal Communications Commission. (2002). Spectrum policy task force report, FCC 02-155.

  3. Jandral, F. K. (2005). Software defined radio-basics and evolution to cognitive radio. EURASIP Journal on Wireless Communication and Networking, 3, 275–283.

    Google Scholar 

  4. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radio more personal. IEEE Personal Communication, 6(4), 13–18.

    Article  Google Scholar 

  5. Biglieri, E., Proakis, J., & Shamai, S. (1998). Fading channels: Information theoretic and communications aspects. IEEE Transactions on Information Theory, 44(6), 2619–2692.

    Article  MATH  MathSciNet  Google Scholar 

  6. Goldsmith, A. J., & Varaiya, P. (1997). Capacity of fading channels with channel side information. IEEE Transactions on Information Theory, 43(6), 1986–1992.

    Article  MATH  MathSciNet  Google Scholar 

  7. Khojastepour, M. A., & Aazhang, B. (2004). The capacity of average and peak power constrained fading channels with channel side information. In Proceedings of IEEE wireless communications and networking conference (WCNC’04) (pp. 77–82), Atlanta, CA, USA.

  8. Ghasemi, A., & Sousa, E. S. (2006). Capacity of fading channels under spectrum-sharing constraints. In Proceedings of IEEE international conference on communications (ICC’06) (pp. 4373–4378), Istanbul, Turkey.

  9. Musavian, L., & Aissa, S. (2007). Ergodic and outage capacities of spectrum sharing systems in fading channels. In Proceedings of IEEE global telecommunications conference (GLOBECOM’07) (pp. 3327–3331), Washington, DC, USA.

  10. Ghasem, Amir, & Sousa, Elvino S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6(2), 649–658.

    Article  Google Scholar 

  11. Wang, B., & Liu, K.-J.-R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.

    Article  Google Scholar 

  12. Asghari, V., & Aissa, S. (2008). Resource sharing in cognitive radio systems: outage capacity and power allocation under soft sensing. In Proceedings of IEEE global telecommunications conference (GLOBECOM’08) (pp. 1–5), New Orleans, LA, USA.

  13. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks: The International Journal of Computer and Telecommun Networking, 50(13), 2127–2159.

    Article  MATH  Google Scholar 

  14. Pandit, S., & Singh, G. (2013). Throughput maximization with reduced data loss rate in cognitive radio network. Telecommunication System (online published). doi:10.1007/s11235-013-9858-z.

  15. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials, 11(1), 116–130.

    Article  Google Scholar 

  16. Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of IEEE, 55(4), 523–531.

    Article  Google Scholar 

  17. Srinivasa, S., & Jafar, S. A. (2010). Soft sensing and optimal power control for cognitive radio. IEEE Transactions on Wireless Communications, 9(12), 3638–3649.

    Article  Google Scholar 

  18. Rezki, Z., & Alouini, M.-S. (2012). Ergodic capacity of cognitive radio under imperfect channel state information. IEEE Transactions on Vehicular Technology, 61(5), 2108–2119.

    Article  Google Scholar 

  19. Parsaeefard, S., & Sharafat, A.-R. (2013). Robust distributed power control in cognitive radio networks. IEEE Transactions on Mobile Computing, 12(4), 609–620.

    Article  Google Scholar 

  20. Zhao, G., Yang, C., Li, G.-Y., Li, D., & Soong, A.-C.-K. (2011). Power and channel allocation for cooperative relay in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 5(1), 151–159.

    Article  Google Scholar 

  21. Kang, X., Garg, H.-K., Liang, Y.-C., & Zhiang, R. (2010). Optimum power allocation for OFDM-based cognitive radio with new primary transmission protection criteria. IEEE Transactions on Wireless Communications, 9(6), 2066–2075.

    Article  Google Scholar 

  22. Li, Q., Li, K. H., & Teh, K. C. (2011). Diversity-multiplexing tradeoff of wireless communication systems with user cooperation. IEEE Transactions on Information Theory, 57(9), 5794–5819.

    Article  MathSciNet  Google Scholar 

  23. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity-Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  24. Asghari, Vahid, & Aissa, Sonia. (2010). Adaptive rate and power transmission in spectrum-sharing systems. IEEE Transactions on Wireless Communications, 9(10), 3272–3280.

    Article  Google Scholar 

  25. Goldsmith, A. J., & Chua, S.-G. (1997). Variable-rate variable-power MQAM for fading channels. IEEE Transactions on Communications, 45(10), 1218–1230.

    Article  Google Scholar 

  26. Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions: With formulas, graphs, and mathematical tables (9th ed.). New York: Dover.

    MATH  Google Scholar 

  27. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  28. Tzeng, S.-S., & Huang, C.-W. (2011). Effective throughput maximization for in-band sensing and transmission in cognitive radio networks. Wireless Networks, 17(4), 1025–1029.

    Article  Google Scholar 

  29. Potier, P., Sorrells, C., Wang, Y., Qian, L., & Li, H. (2014). Spectrum inpainting: A new framework for spectrum status determination in large cognitive radio networks. Wireless Networks, 20(3), 423–439.

    Article  Google Scholar 

  30. Cavers, J.-K. (1972). Variable rate transmission for Rayleigh fading channels. IEEE Transactions on Communications, 20(1), 15–22.

    Article  MathSciNet  Google Scholar 

  31. Webb, W.-T., & Steele, R. (1995). Variable rate QAM for mobile radio. IEEE Transactions on Communications, 43(7), 2223–2230.

    Article  Google Scholar 

  32. Alouini, M.-S., & Goldsmith, A.-J. (2000). Adaptive modulation over Nakagami fading channels. Wireless Personal Communications, 13(1–2), 119–143.

    Article  Google Scholar 

  33. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York: Cambridge University Press.

    Book  MATH  Google Scholar 

  34. Bertsekas, D. P. (1995). Nonlinear programming. Belmont, MA: Athena Scientific.

    MATH  Google Scholar 

  35. Suzuki, H. (1977). A statistical model for urban multipath propagation. IEEE Transactions on Communications, 25(7), 673–680.

    Article  Google Scholar 

  36. Sheikh, A. U., Abdi, M., & Handforth, M. (1993). Indoor mobile radio channel at 946 MHz: Measurements and modeling. In Proceedings of IEEE vehicular technology (VTC’93) (pp. 73–76), Secaucus, NJ.

Download references

Acknowledgments

The authors are sincerely thankful to the anonymous reviewers for their critical comments and suggestions to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, S., Singh, G. Channel capacity in fading environment with CSI and interference power constraints for cognitive radio communication system. Wireless Netw 21, 1275–1288 (2015). https://doi.org/10.1007/s11276-014-0849-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0849-0

Keywords

Navigation