Skip to main content
Log in

Cloning, expression, characterization and mutational analysis of the tfdA gene from Cupriavidus campinensis BJ71

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

2,4-Dichlorophenoxyacetic acid (2,4-D)/α-ketoglutarate (α-KG) dioxygenase (TfdA) is an Fe(II)-dependent enzyme that catalyzes the first step in degradation of the herbicide 2,4-D. Previous studies focused on the tfdA gene in Ralstonia eutropha JMP134 isolated in Australia. In this study, a new tfdA gene was cloned from Cupriavidus campinensis BJ71, an effective degrading bacteria from China, based on the iCOnsensus-DEgenerate Hybrid Oligonucleotide Primers (iCODEHOPs) protocol, combined with high-efficiency Thermal Asymmetric Interlaced PCR (hiTAIL-PCR). The open reading frame of 861 bp encoded a putative 287 amino acid protein with a theoretical molecular mass of 32.32 kDa. The gene was overexpressed in Escherichia coli BL21 (DE3) and the purified TfdA showed optimal activity at pH 6.75 and 30 °C. This enzyme was more thermostable and it could use 3-hydrocinnamic acid as substrate, with a similar enzyme activity compared with 2,4-D. TfdA and its variants were created as maltose-binding protein (MBP) tagged fusion proteins to examine the roles of putative substrate-binding residues. The MBP-N110A, MBP-V198A and MBP-R207K proteins showed decreased k cat and increased Km, and MBP-R278A was inactive, suggesting these residues may affect 2,4-D binding or catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bælum J, Henriksen T, Hansen HCB, Jacobsen CS (2006) Degradation of 4-chloro-2-methylphenoxyacetic acid in top- and subsoil is quantitatively linked to the class III tfdA gene. Appl Environ Microbiol 72(2):1476–1486

    Article  Google Scholar 

  • Bælum J, Nicolaisen MH, Holben WE, Strobel BW, Sørensen J, Jacobsen CS (2008) Direct analysis of tfdA gene expression by indigenous bacteria in phenoxy acid amended agricultural soil. ISME J 2(6):677–687

    Article  Google Scholar 

  • Bælum J, Jacobsen CS, Holben WE (2010) Comparison of 16S rRNA gene phylogeny and functional tfdA gene distribution in thirty-one different 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxy -acetic acid degraders. Syst Appl Microbiol 33(2):67–70

    Article  Google Scholar 

  • Boyce R, Chilana P, Rose TM (2009) iCODEHOPs: a new interactive program for designing COnsensus- Degenerate Hybrid Oligonucleotide Primers from multiply aligned protein sequences. Nucleic Acids Res. doi:10.1093/nar/gkp379

    Google Scholar 

  • Dunning Hotopp JC, Hausinger RP (2001) Alternative substrates of 2,4-dichlorophenoxy- acetate/α- ketoglutarate dioxygenase. J Mol Catal B Enzym 15:155–162

    Article  CAS  Google Scholar 

  • Dunning Hotopp JC, Hausinger RP (2002) Probing the 2,4-dichlorophenoxyacetate/α-ketoglutarate dioxygenase substrate-binding site by site-directed mutagenesis and mechanism-based inactivation. Biochemistry 41:9787–9794

    Article  CAS  Google Scholar 

  • Eichhorn E, van der Ploeg JR, Kertesz MA, Leisinger T (1997) Characterization of alpha-ketoglutarate- dependent taurine dioxygenase from Escherichia coli. J Biol Chem 272:23031–23036

    Article  CAS  Google Scholar 

  • Elkins JM, Ryle MJ, Clifton IJ, Dunning Hotopp JC, Lloyd JS, Burzlaff NI, Baldwin JE, Hausinger RP, Roach PL (2002) X-ray crystal structure of Escherichia coli taurine/α-ketoglutarate dioxygenase complexed to ferrous iron and substrates. Biochemistry 41:5185–5192

    Article  CAS  Google Scholar 

  • Fukumori F, Hausinger RP (1993a) Alcaligenes eutrophus JMP134 “2,4-dichlorophenoxy- acetate monooxygenase” is an & α;-ketoglutarate-dependent dioxygenase. J Bacteriol 175(7):2083–2086

    CAS  Google Scholar 

  • Fukumori F, Hausinger RP (1993b) Purification and characterization of 2,4-dichlorophenoxy-acetate/α-ketoglutarate dioxygenase. J Biol Chem 268(32):24311–24317

    CAS  Google Scholar 

  • Fulthorpe RR, McGowan C, Maltseva OV, Holben WE, Tiedje JM (1995) 2,4- Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes. Appl Environ Microboil 61(9):3274–3281

    CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  • Gonod LV, Martin-Laurent F, Chenu C (2006) 2,4-D impact on bacterial communities, and the activity and genetic potential of 2,4-D degrading communities in soil. FEMS Microbiol Ecol 58:529–537

    Article  CAS  Google Scholar 

  • Han L, Liu Y, He A, Zhao D (2014) 16S rRNA gene phylogeny and tfdA gene analysis of 2,4-D-degrading bacteria isolated in China. World J Microbiol Biotechnol 30(10):2567–2576

    Article  CAS  Google Scholar 

  • Hoffmann D, Kleinsteuber S, Müller RH, Babel W (2003) A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a. Microbiology 149:2545–2556

    Article  CAS  Google Scholar 

  • Hogan DA, Smith SR, Saari EA, McCracken J, Hausinger RP (2000) Site-directed mutagenesis of 2,4-dichlorophenoxyacetic acid/α-ketoglutarate dioxygenase. J Biol Chem 275(17):12400–12409

    Article  CAS  Google Scholar 

  • Itoh K, Kanda R, Momoda Y, Sumita Y, Kamagata Y, Suyama K, Yamamoto H (2000) Presence of 2,4-D catabolizing bacteria in a Japanese arable soil that belong to BANA (Bradyrhizobium-Agromonas-Nitrobacter-Afipia) cluster in α-Proteobacteria. Microbes Environ 15(2):113–117

    Article  Google Scholar 

  • Itoh K, Kanda R, Sumita Y, Kim H, Kamagata Y, Suyama K, Yamamoto H, Hausinger RP, Tiedje JM (2002) tfdA-like genes in 2,4-dichlorophenoxyacetic acid-degrading bacteria belonging to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia cluster in α-Proteobacteria. Appl Environ Microbiol 68(7):3449–3454

    Article  CAS  Google Scholar 

  • Itoh K, Tashiro Y, Uobe K, Kamagata Y, Suyama K, Yamamoto H (2004) Root nodule Bradyhizobium spp. harbor tfdAα and cadA, homologous with genes encoding 2,4-dichlorophenoxyacetic acid-degrading proteins. Appl Environ Microbiol 70:2110–2118

    Article  CAS  Google Scholar 

  • Ka JO, Holben WE, Tiedje M (1994) Genetic and phenotypic diversity of 2,4-dichlorophenoxy- acetic acid (2,4-D)-degrading bacteria isolated from 2,4-D-treated field soils. Appl Environ Microbiol 60(4):1106–1115

    CAS  Google Scholar 

  • Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7(8):1511–1522

    Article  Google Scholar 

  • Kamagata Y, Fulthorpe RR, Tamura K, Takami H, Formey LJ, Tiedje JM (1997) Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol 63(6):2266–2272

    CAS  Google Scholar 

  • King RJ, Short KA, Seidler RJ (1991) Assay for detection and enumeration of genetically engineered microorganisms which is based on the activity of a deregulated 2,4- dichlorophenoxyacetate monooxygenase. Appl Environ Microb 57(6):1790–1792

    CAS  Google Scholar 

  • Kitagawa W, Takam S, Miyauchi K, Masai E, Kamagata Y, Tiedje JM (2002) Novel 2,4-dichloro phenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment. J Bacteriol 184:509–518

    Article  CAS  Google Scholar 

  • Knauer SH, Hartl-Spiegelhauer O, Schwarzinger S, Hänzelmann P, Dobbek H (2012) The Fe(II)/α- ketoglutarate-dependent taurine dioxygenases from Pseudomonas putida and Escherichia coli are tetramers. FEBS J 279(5):816–831

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  Google Scholar 

  • Lee TH, Kurata S, Nakatsu CH, Kamagata Y (2005) Molecular analysis of bacterial community based on 16S rDNA and functional genes in activated sludge enriched with 2,4-dichlorophenoxyacetic acid (2,4-D) under different cultural conditions. Microb Ecol 49(1):151–162

    Article  CAS  Google Scholar 

  • Lerch TZ, Dignac MF, Barriuso E, Bardoux G, Mariotti A (2007) Tracing 2,4-D metabolism in Cupriavidus necator JMP134 with 13 C-labelling technique and fatty acid profiling. J Microbiol Methods 71:162–174

    Article  CAS  Google Scholar 

  • Liu YG, Chen Y (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649–656

    Article  CAS  Google Scholar 

  • Liu YG, Huang N (1998) Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR. Plant Mol Biol Rep 16:175–181

    Article  CAS  Google Scholar 

  • McGowan C, Fulthorpe R, Wright A, Tiedje JM (1998) Evidence for interspecies gene transfer in the evolution of 2,4-dichlorophenoxyacetic acid degraders. Appl Environ Microbiol 64(10):4089–4092

    CAS  Google Scholar 

  • Poh RPC, Smith ARW, Bruce IJ (2002) Complete characterization of Tn5330 from Burkholderia cepacia strain 2a (pIJB1) and studies of 2,4-dichlorophenoxyacetate uptake by the organism. Plasmid 48:1–12

    Article  CAS  Google Scholar 

  • Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res 26(7):1628–1635

    Article  CAS  Google Scholar 

  • Rose TM, Henikoff JG, Henikoff S (2003) CODEHOP (COnsensus-Degenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucleic Acids Res 31(13):3763–3766

    Article  CAS  Google Scholar 

  • Saari RE, Hogan DA, Hausinger RP (1999) Stereospecific degradation of the phenoxypropionate herbicide dichlorprop 6(4):421–428

    CAS  Google Scholar 

  • Servant F, Bru C, Carrère S, Courcelle E, Gouzy J, Peyruc D, Kahn D (2002) ProDom: automated clustering of homologous domains. Brief Bioinform 3(3):246–251

    Article  CAS  Google Scholar 

  • Shaw L, Burns RG (2004) Enhanced mineralization of [U-14C]2,4-dichlorophenoxyacetic acid in soil from the rhizosphere of Trifolium pretense. Appl Environ Microbiol 70:4766–4774

    Article  CAS  Google Scholar 

  • Shimojo M, Kawakami M, Aamda K (2009) Analysis of genes encoding the 2,4- dichlorophenoxyacetic acid-degrading enzyme from Sphingomonas agrestis 58-1. J Biosci Bioeng 108:56–59

    Article  CAS  Google Scholar 

  • Streber WR, Timmis KN, Zenk MH (1987) Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. J Bacteriol 169(7):2950–2955

    CAS  Google Scholar 

  • Suwa Y, Wright AD, Fukimori F, Nummy KA, Hausinger RP, Holben WE, Forney LJ (1996) Characterization of a chromosomally encoded 2,4-dichlorophenoxyacetic acid/α- ketoglutarate dioxygenase from Burkholderia sp. strain RASC. Appl Environ Microbiol 62(7):2464–2469

    CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  Google Scholar 

  • Vedler E, Kõiv V, Heinaru A (2000) Analysis of the 2,4-dichlorophenoxyacetic acid- degradative plasmid pEST4011 of Achromobacter xylosoxidans subsp. denitrificans strain EST4002. Gene 255:281–288

    Article  CAS  Google Scholar 

  • Zakaria D, Lappin-Scott H, Burton S, Whitby C (2007) Bacterial diversity in soil enrichment cultures amended with 2-methyl-4-chlorophenoxy)propionic acid (mecoprop). Environ Microbiol 9:2575–2587

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Foundation of the National Transgenic Major Project of China (2013ZX08010-003, 2014ZX0801008B-002) and the Province Science Project in Guizhou (J [2013] 2123) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Degang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Liu, Y., Li, C. et al. Cloning, expression, characterization and mutational analysis of the tfdA gene from Cupriavidus campinensis BJ71. World J Microbiol Biotechnol 31, 1021–1030 (2015). https://doi.org/10.1007/s11274-015-1852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1852-z

Keywords

Navigation