Skip to main content

Advertisement

Log in

A feeding strategy for incorporation of canola derived medium-chain-length monomers into the PHA produced by wild-type Cupriavidus necator

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to increase the density of wild type Cupriavidus necator H16 biomass grown on fructose in order to produce sufficient copolymer of short-chain-length (scl) and medium-chain-length (mcl) polyhydroxyalkanoate (PHA) from canola oil for mechanical testing of the PHA. Initial batch cultivation on fructose was followed by exponential feeding of fructose at a predetermined μ to achieve 44.4 g biomass/l containing only 20 % w/w of polyhydroxybutyrate (PHB) with a Yx/fructose of 0.44 g/g. In a third stage, canola oil was added under N-limited conditions to produce 92 g/l of biomass with 48 % w/w scl–mcl PHA. Using known standards, the PHA composition was confirmed by GC–MS analysis as 99.81 % 3-hydroxybutyrate, 0.06 % 3-hydroxyvalerate, 0.09 % 3-hydroxyhexanoate and 0.04 % 3-hydroxyoctanoate. The melting temperature (179 °C), crystallinity (54 %), tensile stress (25.1 Mpa) and Young’s modulus (698 Mpa) for a PHB standard decreased to 176 °C, 52 %, 19.1 and 443 Mpa respectively for C. necator PHA produced in the 3-stage process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alibaba, Global trade starts here (2013) http://www.alibaba.com/showroom/caprylic-acid-price.html. Retrieved 14 Aug 2013

  • Antonio RV, Steinbuchel A, Rehm BHA (2000) Analysis of in vivo substrate specificity of the PHA synthase from Ralstonia eutropha: formation of novel copolyesters in recombinant Escherichia coli. FEMS Microbiol Lett 182:111–117

    Article  CAS  Google Scholar 

  • Barham PJ, Keller A, Otun EL, Holmes PJ (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci 19:2781–2794

    Article  CAS  Google Scholar 

  • Brandl H, Knee EJ, Fuller RC, Gross RA, Lenz RW (1989) Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (ß-hydroxyalkanoates): potential sources for biodegradable polyesters. Int J Biol Macromol 11:49–55

    Article  CAS  Google Scholar 

  • Choi JI, Lee SY (1997) Process analysis and economic evaluation of polyhydroxybutyrate production by fermentation. Bioprocess Eng 17:335–342

    Article  CAS  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1999) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Dennis D, McCoy M, Stangl A, Valentin HE, Wu Z (1998) Formation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha. J Biotechnol 64:177–186

    Article  CAS  Google Scholar 

  • Diniz SC, Taciro MK, Gomez JG, da Cruz Pradella JG (2004) High cell-density cultivation of Pseudomonas putida IPT 046 and medium-chain-length polyhydroxyalkanoate production from sugarcane carbohydrates. Appl Biochem Biotechnol 119:51–70

    Article  CAS  Google Scholar 

  • Fukui T, Doi Y (1998) Efficient production of polyhydroxyalkanates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl Microbiol Biotechnol 49:333–336

    Article  CAS  Google Scholar 

  • Green PR, Kemper J, Schechtman L, Guo L, Satkowski M, Fiedler S, Steinbuchel A, Rehm BHA (2002) Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid beta-oxidation inhibited Ralstonia eutropha. Biomacromolecules 3:208–213

    Article  CAS  Google Scholar 

  • Haley S. World and U.S. sugar and corn sweetener prices (2013) Sugar and sweetners yearbook table. USDA Economic Research Service. http://www.ers.usda.gov/data-products.aspx. Retrieved 12 July 2013

  • Haywood GW, Anderson AJ, Dawes EA (1989) The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol Lett 57:1–6

    Article  CAS  Google Scholar 

  • He W, Tian W, Zhang G, Chen GQ, Zhang Z (1998) Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil. FEMS Microbiol Lett 169:45–49

    Article  CAS  Google Scholar 

  • Ichihara K, Fukubayashi Y (2010) Preparation of fatty acid methyl esters for gas-liquid chromatography. J Lipid Res 51:635–640

    Article  CAS  Google Scholar 

  • ICIS Pricing, Fatty acids—fractionated (2013) http://www.icispricing.com/il_shared/Samples/SubPage227.asp. Retrieved 14 Aug 2013

  • Index Mundi, Historical commodity prices (2013) http://www.indexmundi.com/commodities/. Retrieved 12 July 2013

  • Kahar P, Tsuge T, Taguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stab 83:79–86

    Google Scholar 

  • Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43:892–898

    Article  CAS  Google Scholar 

  • Laycock B, Halley P, Pratt S, Werker A, Lant P (2013) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38:536–583

    Article  CAS  Google Scholar 

  • Liebergesell M, Mayer F, Steinbüchel A (1993) Anaylsis of polyhydroxyalkanoic acid-biosynthesis genes of anoxygenic phototrophic bacteria reveals synthesis of a polyester exhibiting an unusal composition. Appl Microbiol Biotechnol 40:292–300

    Article  CAS  Google Scholar 

  • López-Cuellar MR, Alba-Flores J, Gracida Rodríguez JN, Pérez-Guevara F (2011) Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int J Biol Macromol 48:74–80

    Article  Google Scholar 

  • Louie TM, Mah TJ, Oldham W, Ramey WD (2000) Use of metabolic inhibitors and gas chromatography/mass spectrometry to study poly-ß-hydroxyalkanoates metabolism involving cryptic nutrients in enhanced biological phosphorus removal systems. Water Res 34:1507–1514

    Article  CAS  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates); From DNA to Plastic. Microbiol Mol Biol R 63:21–53

    CAS  Google Scholar 

  • Miller GL (1959) Use of DNS reagent for the measurement of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Ng KS, Ooi WY, Goh LK, Shenbagarathai R, Sudesh K (2010) Evaluation of jatropha oil to produce poly(3-hydroxybutyrate) by Cupriavidus necator H16. Polym Degrad Stab 95:1365–1369

    Article  CAS  Google Scholar 

  • Noda (1996) Biodegradable copolymers and plastic articles comprising biodegradable copolymers. US Patent 5,498,692

  • Riedel SL, Bader J, Brigham CJ, Budde CF, Yusof ZA, Rha C, Sinskey AJ (2012) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol Bioeng 109:74–83

    Article  CAS  Google Scholar 

  • Riesenberg D, Schulz V, Knorre WA, Pohl HD, Korz D, Sanders EA, Ross A, Deckwer WD (1991) High cell density cultivation of Escherichia coli at controlled specific growth rate. J Biotechnol 20:17–28

    Article  CAS  Google Scholar 

  • Ryu HW, Cho KS, Kim BS, Chang YK, Chang HN, Shim HJ (1999) Mass production of poly(3-hydroxybutyrate) by fed-batch cultures of Ralstonia eutropha with nitrogen and phosphate limitation. J Microbiol Biotechnol 9:751–756

    CAS  Google Scholar 

  • Shimamura E, Kasuya K, Kobayashi G, Shiotani T, Shima Y, Doi Y (1994) Physical Properties and Biodegradability of Microbial Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 27(3):878–880

    Article  CAS  Google Scholar 

  • Sun Z, Ramsay JA, Guay M, Ramsay BA (2006) Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl Microbiol Biotechnol 71:423–431

    Article  CAS  Google Scholar 

  • Sun Z, Ramsay JA, Guay M, Ramsay BA (2007) Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 74:69–77

    Article  CAS  Google Scholar 

  • Tada K, Kishimoto M, Omasa T, Katakura Y, Suga KI (2000) L-lysine production by exponential feeding of L-threonine. J Biosci Bioeng 90:669–674

    Google Scholar 

  • Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974

    Article  CAS  Google Scholar 

  • Yoon SK, Kang WK, Park TH (1994) Fed-batch operation of recombinant Escherichia coli containing Trp promoter with controlled specific growth rate. Biotechnol Bioeng 43:995–999

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), National Council of Science and Technology (CONACYT—229504), Mexico and Natural Science and Engineering Research Council of Canada. We thank M. Kontopoulou and M. Nerkar (Queen’s University, Canada) for assistance in evaluating mechanical properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana A. Ramsay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathinasabapathy, A., Ramsay, B.A., Ramsay, J.A. et al. A feeding strategy for incorporation of canola derived medium-chain-length monomers into the PHA produced by wild-type Cupriavidus necator . World J Microbiol Biotechnol 30, 1409–1416 (2014). https://doi.org/10.1007/s11274-013-1563-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1563-2

Keywords

Navigation