Skip to main content
Log in

Chelators enhanced biocide inhibition of planktonic sulfate-reducing bacterial growth

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biocides are currently the primary mitigation method to control sulfate-reducing bacteria (SRB) in biofouling, reservoir souring and microbiologically influenced corrosion. Increasingly restrictive environmental regulations and safety concerns on biocide uses demand more efficient dosing of biocides. Chelators have been known to enhance antibiotics because of their properties such as increasing the permeability of the outer cell membrane of Gram-negative bacteria. Two readily biodegradable chelators, ethylenediaminedisuccinate (EDDS) and N-(2-hydroxyethyl)iminodiacetic acid (HEIDA) disodium salts that are touted as potential replacements of ethylenediaminetetraacetic acid (EDTA), were evaluated as potential biocide enhancers for glutaraldehyde and tetrakis hydroxymethyl phosphonium sulfate (THPS) in their inhibition of planktonic SRB growth. Desulfovibrio vulgaris ATCC 7757 and Desulfovibrio desulfuricans ATCC 14563 were grown in modified ATCC 1249 medium and in enriched artificial seawater, respectively. Laboratory tests in 100 ml anaerobic vials showed that EDDS or HEIDA alone did not inhibit SRB growth. However, when EDDS or HEIDA was combined with glutaraldehyde or THPS, each of them enhanced the biocide inhibition of planktonic SRB growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atkinson M, Bingman C (1996) The composition of several synthetic seawater mixes. J Aquaric Aquat Sci 8:39–43

    Google Scholar 

  • Ballantyne B, Jordan SL (2004) Biocides. In: Marrs TC, Ballantyne B (eds) Pesticide toxicology and international regulation. Wiley, Chichester, pp 384–385

    Google Scholar 

  • Banin E, Brady KM, Greenberg EP (2006) Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. App Environ Microbial 72:2064–2069. doi:10.1128/AEM.72.3.2064-2069.2006

    Article  CAS  Google Scholar 

  • De Savaria SG, de Mele MFL (2005) Enhancement of glutaraldehyde biocidal efficacy by the application of an electric field. Effect on sessile cells and on cells released by the biofilm. World J Microbiol Biotechnol 21:1077–1081. doi:10.1007/s11274-004-8288-1

    Article  Google Scholar 

  • Denyer SP (1995) Mechanisms of action of antibacterial biocides. Int Biodeter Biodegr 36:227–245. doi:10.1016/0964-8305(96)00015-7

    Article  CAS  Google Scholar 

  • Dow Chemical Co., XUS40855.01 (2007) Developmental chelating agent. Available via http://www.prochem.ch/html/forum/XUS40855.01%20Data%20Sheet.pdf (a technical report). Accessed 01 Feb 2009

  • European Commission (2004) Edetic acid (EDTA) (CAS No: 60-00-4): European Union Risk Assessment Report vol 49. European Chemicals Bureau, Luxembourg. Available via http://ecb.jrc.ec.europa.eu/documents/Existing-Chemicals/RISK_ASSESSMENT/REPORT/edtareport061.pdf. Accessed 01 Feb 2009

  • Fernance N, Farinha PA, Javaherdashti A (2007) SRB-assisted MIC of fire sprinkler piping. Mater Performance 46(2):46–49

    CAS  Google Scholar 

  • Flemming HC (1996) Economical and technical overview. In: Heitz E, Flemming HC, Sand W (eds) Microbially influenced corrosion of materials. Springer, Berlin, pp 5–14

    Google Scholar 

  • Gardner LR, Stewart PS (2002) Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms. J Ind Microbiol Biotechnol 29:354–360. doi:10.1038/sj.jim.7000284

    Article  CAS  Google Scholar 

  • Greene EA, Brunelle V, Jenneman GE, Voordouw G (2006) Synergistic inhibition of microbial sulfide production by combinations of the metabolic inhibitor nitrite and biocides. App Environ Microbial 72:7897–7901. doi:10.1128/AEM.01526-06

    Article  CAS  Google Scholar 

  • Hubert C, Voordouw G (2007) Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol 73:2644–2652. doi:10.1128/AEM.02332-06

    Article  CAS  Google Scholar 

  • Jaworska JS, Schowanek D, Feijtel TCJ (1999) Environmental risk assessment for trisodium [S, S]-ethylene diamine disuccinate, a biodegradable chelator used in detergent applications. Chemosphere 38:3597–3625. doi:10.1016/S0045-6535(98)00573-6

    Article  CAS  Google Scholar 

  • Laopaiboon L, Phukoetphim N, Laopaiboon P (2006) Effect of glutaraldehyde biocide on laboratory-scale rotating biological contactors and biocide efficacy. Electron J Biotechnol 9:358–369. doi:10.2225/vol9-issue4-fulltext-10

    Article  Google Scholar 

  • Poulton WIJ, Cloete TE, von Holy A (1995) Microbiological survey of open recirculating cooling water systems and their raw water supplies at twelve fossil-fired power stations. Water SA 21:357–364

    Google Scholar 

  • Raad I, Sherertz R (2001) Chelators in combination with biocides: treatment of microbially induced biofilm and corrosion. US patent 6,267,979

  • Raad I, Chatzinikolaou I, Chaiban G, Hanna H, Hachem R, Dvorak T, Cook G, Costerton W (2003) In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrob Agents Chemother 47:3580–3585. doi:10.1128/AAC.47.11.3580-3585.2003

    Article  CAS  Google Scholar 

  • Raad I, Hanna H, Dvorak T, Chaiban G, Hachem R (2007) Optimal antimicrobial catheter lock solution, using different combinations of minocycline, EDTA, and 25-percent ethanol, rapidly eradicates organisms embedded in biofilm. Antimicrob Agents Chemother 51:78–83. doi:10.1128/AAC.00154-06

    Article  CAS  Google Scholar 

  • Russell AD (2002) Antibiotic and biocide resistance in bacteria: introduction. J Appl Microbiol Suppl 92:1s–3s. doi:10.1046/j.1365-2672.92.5s1.14.x

    Article  Google Scholar 

  • Schowanek D, Feijtel TCJ, Perkins CM, Hartman FA, Federle TW, Larson RJ (1997) Biodegradation of [S, S], [R, R] and mixed stereoisomers of ethylene diamine disuccinic acid (EDDS), a transition metal chelator. Chemosphere 34:2375–2391. doi:10.1016/S0045-6535(97)00082-9

    Article  CAS  Google Scholar 

  • Tator KB (2003) Preventing hydrogen sulfide and microbiologically influenced corrosion in wastewater facilities. Mater Performance 42(7):32–37

    CAS  Google Scholar 

  • Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395–411

    CAS  Google Scholar 

  • Vance I, Thrasher DR (2005) Reservoir souring: mechanism and prevention. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 123–142

    Google Scholar 

  • Videla HA (1996) Manual of biocorrosion. CRC Press, Boca Raton

    Google Scholar 

  • Von Rege H, Sand W (1998) Evaluation of biocide efficacy by microcalorimetric determination of microbial activity in biofilms. J Microbiol Methods 33:227–235. doi:10.1016/S0167-7012(98)00055-4

    Article  Google Scholar 

  • Wagner D, Chamberlain AHL (1997) Microbiologically influenced copper corrosion in potable water with emphasis on practical relevance. Biodegradation 8:177–187. doi:10.1023/A:1008206918628

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Enhanced Corrosion Prevention, LLC, and a seed grant from the M. D. Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, J., Zhao, K., Gu, T. et al. Chelators enhanced biocide inhibition of planktonic sulfate-reducing bacterial growth. World J Microbiol Biotechnol 26, 1053–1057 (2010). https://doi.org/10.1007/s11274-009-0269-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0269-y

Keywords

Navigation