Skip to main content
Log in

The use of line transects for an accurate description of river bank vegetation

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

The last decades, considerable efforts have been made to increase the habitat diversity of river banks along navigable waterways. In particular the construction of nature friendly bank protections aimed to preserve or restore ecological gradients, enhancing habitat diversity. To evaluate the ecological gain obtained so far, monitoring studies are performed. The use of the quadrat method is widespread in the vegetation monitoring of river banks. However, when monitoring narrow river banks, this method has serious restrictions. A possible alternative could be the use of a line transect method. Both methods were compared by calculating weighted averages of Ellenberg indicator values of all species present in a sample area, to determine the most appropriate method. We observed that the Ellenberg indicator value for moisture was the most appropriate variable to describe changes perpendicular to the waterline. When comparing both methods through time, they seemed to produce similar results in the case of species poor vegetation types such as reedbeds or some grassland types. Nevertheless the line transect method produced a much better description of the spatial gradient complexity. The use of the most efficient monitoring method is determinant to accurately evaluate the present gradients and the gradients after an intervention has taken place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alexander CJ, Holland GM, Winder L, Woolley C, Perry JN (2005) Performance of sampling strategies in the presence of known spatial patterns. Ann Appl Biol 146(3):361–370. doi:10.1111/j.1744-7348.2005.040129.x

    Article  Google Scholar 

  • Arévalo JR, Delgado JD, Otto R, Naranjo A, Salas M, Fernándes-Palacios JM (2005) Distribution of alien vs. native plants species in roadside communities along an altitudinal gradient in Tenerife and Gran Canaria (Canary Islands). Perspect Plant Ecol 7(3):185–202. doi:10.1016/j.ppees.2005.09.003

    Article  Google Scholar 

  • Boedeltje G, Bakker JP, ter Heerdt GNJ (2003) Potential role of propagule banks in the development of aquatic vegetation in backwaters along navigation canals. Aquat Bot 77:53–69. doi:10.1016/S0304-3770(03)00078-0

    Article  Google Scholar 

  • Bowers K, Boutin C (2008) Evaluating the relationship between floristic quality and measures of plant biodiversity along stream bank habitats. Ecol Indic 8:466–475. doi:10.1016/j.ecolind.2007.05.001

    Article  Google Scholar 

  • Brady WW, Mitchell JE, Bonham CD, Cook JW (1995) Assessing the power of the point-line transect to monitor changes in basal plant cover. J Range Manag 48:187–190. doi:10.2307/4002808

    Article  Google Scholar 

  • Braun-Blanquet J (1928) Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer, Berlin

    Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL (2005) Distance sampling. Encyclopedia of biostatistics, 2nd edn. Wiley

  • Canfield RH (1941) Application of the line-interception method in sampling range vegetation. J For 39:338–394

    Google Scholar 

  • Coops H, Van Der Velde G (1996) Impact of hydrodynamic changes on the zonation of helophytes. J Aquat Ecol 30(2–3):165–173. doi:10.1007/BF02272236

    Article  CAS  Google Scholar 

  • Cummings J, Smith D (2000) The line-intercept method: A tool for introductory plant ecology laboratories (p 234–246). In: Karcher SJ (ed) Tested studies for laboratory teaching. Vol. 22. Proceedings of the 22nd Workshop/Conference of the Association for Biology Laboratory Education (ABLE), p 489

  • Czerepko J (2008) A long-term study of successional dynamics in the forest wetlands. For Ecol Manag 255:630–642

    Article  Google Scholar 

  • Daubenmire R (1959) A canopy-coverage method of vegetational analysis. Northwest Sci 33:43–64

    Google Scholar 

  • Diekmann M (2002) Species indicator values as an important tool in applied plant ecology—a review. Basic Appl Ecol 4:49–506. doi:10.1078/1439-1791-00185

    Google Scholar 

  • Diekmann M, Falkengren-Grerup U (1998) A new species index for forest vascular plants: development of functional indices based on mineralization rates of various forms of soil nitrogen. J Ecol 86:269–283. doi:10.1046/j.1365-2745.1998.00250.x

    Article  CAS  Google Scholar 

  • Dupré C, Diekmann R (1998) Prediction of occurrence of vascular plants in deciduous forests of South Sweden by means of Ellenberg indicator values. J Veg Sci 1:139–150. doi:10.2307/1479092

    Article  Google Scholar 

  • Dupré C, Wessberg C, Diekmann M (2002) Species richness in deciduous forests: effects of species pools and environmental variables. J Veg Sci 13:505–516. doi:10.1111/j.1654-1103.2002.tb02077.x

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Pauliβen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18:1–248

    Google Scholar 

  • Fewster RM, Laake JL, Buckland ST (2005) Line transect sampling in small and large regions. Biometrics 61(3):856–859. doi:10.1111/j.1541-0420.2005.00413-1.x

    Article  PubMed  Google Scholar 

  • Gillison AN, Brewer KRW (1985) The use of gradient directed transects or gradsects in natural resource surveys. J Environ Manag 20:103–127

    Google Scholar 

  • Grelsson G (2008) Vegetational changes on two eroding banks of a short-term regulated river reservoir in northern Sweden. Nord J Bot 5(6):581–614. doi:10.1111/j.1756-1051.1985.tb01695.x

    Article  Google Scholar 

  • Hill MO, Carey PD (1997) Prediction of yield in the Rothamsted Park Grass Experiment by Ellenberg indicator values. J Veg Sci 8:579–586. doi:10.2307/3237210

    Article  Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58. doi:10.1007/BF00048870

    Article  Google Scholar 

  • Hoshino A, Yoshihara Y, Sasaki T, Okayasu T, Jamsran U, Okuro T, Takeuchi K (2009) Comparison of vegetation changes along grazing gradients with different numbers of livestock. J Arid Environ 73(6/7):687–690. doi:10.1016/j.jaridenv.2009.01.005

    Article  Google Scholar 

  • Jerling L (1983) Composition and viability of the seed bank along a successional gradient on a Baltic sea shore meadow. Holarct Ecol 6:150–156. doi:10.1111/j.1600-0587.1983.tb01076.x

    Google Scholar 

  • Keddy PA (1984) Quantifying a within lake gradient of wave energy in Gillfillan Lake, Nova Scotia. Can J Bot 62:301–309. doi:10.1139/b84-048

    Article  Google Scholar 

  • Kercher SM, Frieswyck CB, Christin B, Zedler JB (2003) Effects of sampling teams and estimation methods on the assessment of plant cover. J Veg Sci 14:899–906. doi:10.1111/j.1654-1103.2003.tb02223.x

    Article  Google Scholar 

  • Klosowski S (1993) The shore vegetation in selected lakeland areas in northeastern Poland. Hydrobiologia 251:227–237. doi:10.1007/BF00007182

    Article  CAS  Google Scholar 

  • Lameire S, Hermy M, Honnay O (2000) Two decades of change in the ground vegetation of a mixed deciduous forest in an agricultural landscape. J Veg Sci 11:695–704. doi:10.2307/3236576

    Article  Google Scholar 

  • Li MH, Eddleman KE (2002) Biotechnical engineering as an alternative to traditional engineering methods. A biotechnical streambank stabilization design approach. Landsc Urban Plan 60:225–242. doi:10.1016/S0169-2046(02)00057-9

    Article  Google Scholar 

  • Long JW, Tecle A, Burnette BM (2003) Marsh development at restoration sites on the White Mountain Apache Reservation, Arizona. J Am Water Resour Assoc 39(6):1345–1359. doi:10.1111/j.1752-1688.2003.tb04422.x

    Article  CAS  Google Scholar 

  • Lörentzen S, Roscher C, Schumacher J, Schulze ED, Schmid B (2008) Species richness and identity affect the use of aboveground space in experimental grasslands. Perspect Plant Ecol Evol Syst 10(2):73–87. doi:10.1016/j.ppees.2007.12.001

    Article  Google Scholar 

  • Mac Nally R, Molyneux G, Thomson JR, Lake PS, Read J (2008) Variation in widths of riparian-zone vegetation of higher-elevation streams and implications for conservation management. Plant Ecol 198:89–100. doi:10.1007/s11258-007-9387-5

    Article  Google Scholar 

  • McCune B, Mefford MJ (1995) PC-ORD. Multivariate analysis of ecological data, Version, 2.0. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Murphy KJ, Eaton JW (1983) Effects of pleasure-boat traffic on macrophyte growth in canals. J Appl Ecol 20:713–729. doi:10.2307/2403122

    Article  Google Scholar 

  • Muscha JM, Hild AL (2006) Biological soil crusts in grazed and ungrazed Wyoming sagebrush steppe. J Arid Environ 67(2):195–207. doi:10.1016/j.jaridenv.2006.02.010

    Article  Google Scholar 

  • Økland RH, Eilertsen O (1994) Canonical correspondence analysis with variation partitioning: some comments and an application. J Veg Sci 5:117–126. doi:10.2307/3235645

    Article  Google Scholar 

  • Økland RH, Eilertsen O (1996) Dynamics of understorey vegetation in an old-growth boreal coniferous forest, 1988–1993. J Veg Sci 7:747–762. doi:10.2307/3236386

    Article  Google Scholar 

  • Ozinga WA, Schaminée JHJ, Bekker RM, Bonn S, Poschlod P, Packenberg O, Bakker J, van Groenendael JM (2005) Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos 108:555–561. doi:10.1111/j.0030-1299.2005.13632.x

    Article  Google Scholar 

  • Peet RK, Christensen NL (1988) Changes in species diversity during secondary forest succession on the North Carolina piedmont. In: During HJ, Werger MJA, Williams JH (eds) Diversity and pattern in plant communities. SPB Academic Publishing, The Hague, pp 233–245

    Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reed RA, Peet RK, Palmer MW, White PS (1993) Scale dependence of vegetation-environment correlations: a case study of a North Carolina piedmont woodland. J Veg Sci 4:329–340. doi:10.2307/3235591

    Article  Google Scholar 

  • Rood SB, Braatne JF, Goater LA (2010) Favorable fragmentation: river reservoirs can impede downstream expansion of riparian weeds. Ecol Appl 20:1664–1677. doi:10.1890/09-0063.1

    Article  PubMed  Google Scholar 

  • Rossi AM, Moon DC, Casamatta D, Smithe K, Bentzien C, Mc Gregor J, Norwich A, Perkerson E, Perkerson R, Savinon J, Stokes K, Doebberfuhl D (2010) Pilot study on the effect of partially restored riparian plant communities on habitat quality and biodiversity along first-order tributaries of Lower St. Johns River. J Water Resour Prot 2:771–782. doi:10.4236/jwarp.2010.29090

    Article  CAS  Google Scholar 

  • Schaminée JHJ, Stortelder AHF, Weeda EJ (1995) De vegetatie van Nederland. Deel 2. Plantengemeenschappen van wateren, moerassen en natte heiden. Opulus Press, Uppsala/Leiden

    Google Scholar 

  • Schaminée JHJ, Stortelder AHF, Weeda EJ (1996) De vegetatie van Nederland. Deel 3. Plantengemeenschappen van graslanden, zomen en droge heiden. Opulus Press, Uppsala/Leiden

    Google Scholar 

  • Schwickerath M (1931) Die Gruppenabundanz (Gruppenmächtigkeit); ein Beitrag zur Begriffsbildung in der Pflanzensoziologie. Englers Bot Jahrb 64:1–16

    Google Scholar 

  • Shannon C (1948) A mathematical theory of communication. Bell Syst Technol J 27:379–423

    Article  Google Scholar 

  • Steinhardt T (2009) Comparison of recent vegetation and diaspore banks along abiotic gradients in brackish coastal lagoons. Aquat Bot 91(1):20–26. doi:10.1016/j.aquabot.2009.01.004

    Article  Google Scholar 

  • ter Braak CJF, Barendregt LG (1986) Weighted averaging of species indicator values: its efficiency in environmental calibration. Math Biosci 78:57–72. doi:10.1016/0025-5564(86)90031-3

    Article  Google Scholar 

  • van Coller AL, Rogers KH, Heritage GL (2000) Riparian vegetation-environment relationships: complementarity of gradients versus patch hierarchy approaches. J Veg Sci 11(3):337–350. doi:10.2307/3236626

    Article  Google Scholar 

  • Van Kerckvoorde A, Verschelde P, Vanderhaeghe F, Raman M, Vermeersch S (2013) Constructed marginal shallow water zones along a navigable canal: possibilities and constraints for helophyte and aquatic vegetation. Ann Limnol 49:51–63. doi:10.1051/limn/2013039

    Article  Google Scholar 

  • Vermaat JE, de Bruyne RJ (1993) Factors limiting the distribution of submurged waterplants in the lowland River Vecht (The Netherlands). Freshw Biol 30:147–157. doi:10.1111/j.1365-2427.1993.tb00795.x

    Article  Google Scholar 

  • Vermeersch S, De Genst W, Vermoesen F, Triest L (2003) The influence of transformations of an ordinal scale of a floristic gradient, applied on a TWINSPAN classification. Flora 198:389–403. doi:10.1078/0367-2530-00111

    Article  Google Scholar 

  • Weber A, Lautenbach S, Wolter C (2012) Improvement of aquatic vegetations in urban waterways using protected artificial shallows. Ecol Eng 42:160–167. doi:10.1016/j.ecoleng.2012.01.007

    Article  Google Scholar 

  • Wilby NJ, Eaton JW (1996) Backwater habitats and their role in nature conservation on navigable waterways. Hydrobiologia 340:333–338. doi:10.1007/978-94-011-5782-7-53

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by Waterwegen & Zeekanaal NV. Thanks are expressed to Dr. C. Belpaire, Research Institute for Nature and Forest, for his critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Vermeersch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vermeersch, S., Van Kerckvoorde, A. The use of line transects for an accurate description of river bank vegetation. Wetlands Ecol Manage 24, 667–681 (2016). https://doi.org/10.1007/s11273-016-9495-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-016-9495-x

Keywords

Navigation