Skip to main content

Advertisement

Log in

Physicochemical controls of diffusive methane fluxes in the Okavango Delta, Botswana

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Atmospheric methane (CH4) is one of the three key greenhouse gases (GHGs) driving global climate change. The atmospheric concentration of CH4 has increased by about 150 % above pre-industrial levels of 400–700 ppb due to anthropogenic activities. Although tropical wetlands account for 50–60 % of the global wetland CH4 emissions, the biogeochemistry of these wetlands, including controls of CH4 emissions from the systems, is poorly understood compared to temperate wetlands. This has resulted in large inter-model variations of the magnitude and distribution of CH4 emission estimates from these tropical wetlands. A recent study in the Okavango Delta, Botswana, estimated diffusive CH4 flux at 1.8 ± 0.2 Tg year−1, accounting for 2.8 ± 0.3 % of the total CH4 emission from tropical wetlands. In this paper we present an assessment of relationships between diffusive CH4 flux rates and physicochemical variables in the overlying water column to identify and understand regulatory variables for the diffusive CH4 fluxes in the Delta. The results show that diffusive CH4 flux rates from the Delta seem to be controlled by a combination of physicochemical variables. Although site specific fluxes seem to be controlled by different combinations of factors, temperature was the primary predictor of CH4 flux rates at almost all the sampled habitats and sites in the Delta. Most physicochemical variables, especially in the permanent swamps, were correlated with temperature implying that their regulatory effect on diffusive CH4 fluxes could be modified by climate change feedback as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abril G, Commarieu M-C, Guerin F (2007) Enhanced methane oxidation in an estuarine turbidity maximum. Limnol Oceanogr 52(1):470–475

    Article  CAS  Google Scholar 

  • Bartlett KB, Harriss RC (1993) Review and assessment of methane emissions from wetlands. Chemosphere 16:261–320

    Article  Google Scholar 

  • Benner R, Moran MA, Hodson RE (1985) Effects of pH and plant source on lignocelluloses biodegradation rates in two wetland ecosystems, the Okefenokee Swamp and Georgia salt marsh. Limnol Oceanogr 30(3):489–499

    Article  CAS  Google Scholar 

  • Bergman I, Svensson BH, Nilsson M (1998) Regulation of methane production in a Swedish acid mire by pH, temperature and substrate. Soil Bio Biochem 30:729–741

    Article  CAS  Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang QL (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Change Biol 19:1325–1346

    Article  Google Scholar 

  • Cao M, Gregson K, Marshall S, Dent JB, Heal OW (1996a) Global methane emissions from rice paddies. Chemosphere 33(5):879–897

    Article  CAS  Google Scholar 

  • Cao M, Marshall S, Gregson K (1996b) Global carbon exchange and methane emissions from natural wetlands: application of a process-based model. J Geophys Res 101:14399–14414

    Article  CAS  Google Scholar 

  • Cawley KM, Wolski P, Mladenov N, Jaffe R (2012) Dissolved organic matter biogeochemistry along a transect of the Okavango Delta, Botswana. Wetlands 32:475–486

    Article  Google Scholar 

  • Chanton JP, Dacey JWH (1991) Effects of vegetation on methane flux, reservoirs, and carbon isotopic composition. In: Sharkey TD, Holland EA, Mooney HA (eds) Trace gas emissions by plants. Academic Press, San Diego, pp 65–92

    Chapter  Google Scholar 

  • Chen Y-H, Prinn RG (2006) Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model. J Geophys Res 111:D10307. doi:10.1029/2005JD006058

    Article  Google Scholar 

  • Christensen TR, Ekberg A, Ström L, Mastepanov M, Panikov N, Öquist M, Svensson BH, Nykänen H, Martikainen PJ, Oskarsson H (2003) Factors controlling large scale variations in methane emissions from wetlands. Geophys Res Lett 30(7):1414

    Article  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60(4):609–640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Copeland BJ (1967) Environmental characteristics of hypersaline lagoons. Contrib Mar Sci 12:207–218

  • Crowe SA, Katsev S, Leslie K, Sturm A, Magen C, Nomosatryo S, Pack MA, Kessler JD, Reeburgh WS, Roberts JA, González L, Douglas Haffner G, Mucci A, Sundby B, Fowle DA (2011) The methane cycle in ferruginous Lake Matano. Geobiology 9:61–78

  • Crozier CR, DeLaune RD, Patrick WJ Jr (1995) Methane production in Mississippi deltaic plain wetland soils as a function of soil redox species. In: Lal R, Kimble J, Levine E, Stewart BA (eds) Soils and global climate change. Lewis Publishers, Boca Raton, pp 247–255

    Google Scholar 

  • Daulat WE, Clymo RS (1998) Effects of temperature and watertable on the efflux of methane from peatland surface cores. Atmos Environ 32(19):3207–3218

    Article  CAS  Google Scholar 

  • Denier van der Gon HAC, Neue H-U (1996) Oxidation of methane in the rhizosphere of rice plants. Biol Fert Soil 22:359–366

    Article  CAS  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Dunfield P, Knowles R, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils—response to temperature and pH. Soil Biol Biochem 25:321–326

    Article  CAS  Google Scholar 

  • Eller G, Kanel LK, Kruger M (2005) Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plußsee. Appl Environ Microbiol 71:8925–8928

  • Epp MA, Chanton JP (1993) Rhizospheric methane oxidation determined by the methyl fluoride inhibition technique. J Geophys Res 98:18413–18422

    Article  CAS  Google Scholar 

  • Galand PE, Fritze H, Conrad R, Yrjala K (2005) Pathways for methanogenesis and diversity of methanogenic archaea in three peatland ecosystems. Appl Environ Microbiol 71(4):2195–2198

  • Gieske A (1997) Modelling outflow from the Jao/Boro system in the Okavango Delta, Botswana. J Hydrol 193:214–239

    Article  Google Scholar 

  • Gondwe MJ, Masamba WRL (2014) Spatial and temporal dynamics of diffusive methane emissions in the Okavango Delta, northern Botswana, Africa. Wetl Ecol Manag 22:63–78

    Article  CAS  Google Scholar 

  • Gumbricht T, McCarthy TS, Merry CL (2001) The topography of the Okavango Delta, Botswana, and its tectonic and sedimentological implications. S Afr J Geol 104:243–264

    Article  Google Scholar 

  • Gumbricht T, Wolski P, Frost P, McCarthy TS (2004) Forecasting the spatial extent of the annual flood in the Okavango Delta, Botswana. J Hydrol 290:178–191

    Article  Google Scholar 

  • Happell JD, Chanton JP, Whiting GJ, Showers WS (1993) Stable isotopes as tracers of methane dynamics in Everglades marshes with and without active populations of methane oxidizing bacteria. J Geophys Res 98:14771–14782

    Article  Google Scholar 

  • Heilman MA, Carlton RG (2001) Methane oxidation associated with submersed vascular macrophytes and its impact on plant diffusive mathane flux. Biogeochemistry 52:207–224

    Article  Google Scholar 

  • Heitmann T, Blodau C (2006) Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chem Geol 235:12–20

    Article  CAS  Google Scholar 

  • Heitmann T, Goldhammer T, Beer J, Blodau C (2007) Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog. Glob Change Biol 13:1771–1785

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, USA, p 1535

  • Jarrell KF (1985) Extreme oxygen sensitivity in methanogenic archaebacteria. Bioscience 35(5):298–302

    Article  CAS  Google Scholar 

  • Jones WJ, Nagle DP Jr, Whitman WB (1987) Methanogens and the diversity of archaebacteria. Microbiol Rev 51(1):135–177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerr SJ (1995) Silt, turbidity and suspended sediments in the aquatic environment: an annotated bibliography and literature review. Ontario Ministry of Natural Resources, Southern Region Science & Technology Transfer Unit Technical Report TR-008. pp 277

  • King GM (1990) Regulation by light of methane emissions from a wetland. Nature 345:513–515

    Article  CAS  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  PubMed  Google Scholar 

  • Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature 344:529–531

    Article  CAS  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Article  Google Scholar 

  • Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus 50B:128–150

    Article  CAS  Google Scholar 

  • Liesack W, Schnell S, Revsbech NP (2000) Microbiology of flooded rice paddies. FEMS Microbiol Rev 24:625–645

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  CAS  Google Scholar 

  • Lu Y, Wassmann R, Neue H-U, Huang C (2000) Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil. Soil Sci Soc Am J 64:2011–2017

    Article  CAS  Google Scholar 

  • Lupascu M, Wadham JL, Hornibrook ERC, Pancost RD (2012) Temperature sensitivity of methane production in the permafrost active layer at Stordalen, Sweden: a comparison with non-permafrost northern wetlands. Arct Antarct Alp Res 44(4):469–482

    Article  Google Scholar 

  • Mackay AW, Davidson T, Wolski P, Mazebedi R, Masamba WRL, Huntsman-Mapila P, Todd M (2011) Spatial and seasonal variability in surface water chemistry in the Okavango Delta, Botswana: a multivariate approach. Wetlands 31:815–829

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Matthews E, Fung I (1987) Methane emissions from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob Biogeochem Cycle 1:61–86

    Article  CAS  Google Scholar 

  • McCarthy TS (2006) Groundwater in the wetlands of the Okavango Delta, Botswana, and its contribution to the structure and function of the ecosystem. J Hydrol 320:264–282

    Article  CAS  Google Scholar 

  • McCarthy TS, Ellery WN (1994) The effect of vegetation on soil and ground water chemistry and hydrology of islands in the seasonal swamps of the Okavango Fan, Botswana. J Hydrol 154:169–193

    Article  CAS  Google Scholar 

  • McCarthy TS, Ellery WN, Bloem A (1998) Some observations on the geomorphological impact of hippopotamus (Hippopotamus amphibious L.) in the Okavango Delta, Botswana. Afr J Ecol 36:44–56

    Article  Google Scholar 

  • Megonigal JP, Hines ME, Visscher PT (2004) Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Schlesinger WH (ed) Biogeochemistry. Elsevier-Pergamon, Oxford, pp 317–424

    Google Scholar 

  • Middelburg JJ, Nieuwenhuize J, Iversen N, Høgh N, De Wilde H, Helder W, Seifert R, Christof O (2002) Methane distribution in European tidal estuaries. Biogeochemistry 59:95–119

    Article  Google Scholar 

  • Milzow C, Kgotlhang L, Bauer-Gottwein P, Meier P, Kinzelbach W (2009) Regional review: the hydrology of the Okavango Delta, Botswana—processes, data and modelling. Hydrogeol J 17(6):1297–1328

    Article  Google Scholar 

  • Mladenov N, McKnight DM, Wolski P, Ramberg L (2005) Effects of annual flooding on dissolved organic carbon dynamics within a pristine wetland, the Okavango Delta, Botswana. Wetlands 25(3):622–638

    Article  Google Scholar 

  • Mladenov N, McKnight DM, Macko SA, Norris M, Cory RM, Ramberg L (2007) Simulation of DOM fluxes in a seasonal floodplain of the Okavango Delta, Botswana. Ecol Model 205:181–195

    Article  Google Scholar 

  • Moran MA, Benner R, Hodson RE (1989) Kinetics of microbial degradation of vascular plant material in two wetland ecosystems. Oecologia 79:158–167

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    CAS  PubMed  Google Scholar 

  • Nahlik AM, Mitsch WJ (2011) Methane emissions from tropical freshwater wetlands located in different climatic zones of Costa Rica. Glob Change Biol 17:1321–1334

    Article  Google Scholar 

  • Neue HU (1989) Organic matter dynamics in wetland soils. In: Wetland soils: characterization, classification, and utilization. International Rice Institute, Los Banos, Philippines, pp 109–122

  • Niemann H, Hitz C, Blees J, Schubert CJ, Veronesi M, Simona M, Lehmann MF (2009) Biogeochemical signatures of the anaerobic methane oxidation in a south alpine lake (Lake Lugano). Geochim Cosmochim Acta 73:A942–A942

  • Pester M, Knorr K-H, Friedrich MW, Wagner M, Loy R (2012) Sulfate-reducing microorganisms in wetlands–fameless actors in carbon cycling and climate change. Front Microbiol 3:72. doi:10.3389/fmicb.2012.00072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prietzel J, Thieme J, Tyufekchieva N, Paterson D, McNulty I, Kogel-Knabner I (2009) Sulfur speciation in well-aerated and wetland soils in a forested catchment assessed by sulphur K-edge X-ray absorption near-edge spectroscopy (XANES). J Plant Nutr Soil Sci 172:393–403

    Article  CAS  Google Scholar 

  • Ramberg L, Hancock P, Lindholm M, Meyer T, Ringrose S, Silva J, Van As J, VanderPost C (2006) Species diversity of the Okavango Delta, Botswana. Aquat Sci 68:310–337

    Article  Google Scholar 

  • Reddy KR, D’Angelo EM, Harris WG (2000) Biogeochemistry of wetlands. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp G28–119

    Google Scholar 

  • Sawyer TE, King GM (1993) Glucose uptake and end product formation in an intertidal marine sediment. Appl Environ Microbiol 59:120–128

  • Schönheit P, Keweloh H, Thauer R (1981) Factor F420 degradation in Methanobacterium thermoautotrophicum during exposure to oxygen. FEMS Microbiol Lett 12:347–349

    Article  Google Scholar 

  • Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41(1):23–51

    Article  CAS  Google Scholar 

  • Spahni R, Chappellaz J, Stocker TF, Loulergue L, Hausammann G, Kawamura K, Flückiger J, Schwander J, Raynaud D, Masson-Delmotte V, Jouzel J (2005) Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science 310:1317–1321

    Article  CAS  PubMed  Google Scholar 

  • Tang KW, McGinnis DF, Frindte K, Brüchert V, Grossart H-P (2014) Paradox reconsidered: methane oversaturation in well-oxygenated lake waters. Limnol Oceanogr 59(1):275–284

    Article  Google Scholar 

  • van Winden JF, Reichart G-J, McNamara NP, Benthien A, Damsté JSS (2012) Temperature-induced increase in methane release from peat bogs: a mesocosm experiment. PLoS ONE 7(6):e39614. doi:10.1371/journal.pone.0039614

    Article  PubMed Central  PubMed  Google Scholar 

  • Wassmann R, Thein UG, Whiticar MJ, Rennenberg H, Seiler W, Junk WJ (1992) Methane emissions from the Amazon floodplain: characterization of the production and transport. Global Biogeochem Cycle 6:3–13

    Article  CAS  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708

    Article  CAS  PubMed  Google Scholar 

  • Westermann P (1993) Temperature regulation of methanogenesis in wetlands. Chemosphere 26:321–328

    Article  CAS  Google Scholar 

  • Westermann P, Ahring BK (1987) Dynamics of methane production, sulfate reduction, and denitrification in a permanently waterlogged alder swamp. Appl Environ Microbiol 53:2554–2559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wetzel RG (2001) Limnology of lake and river ecosystems, 3rd edn. Academic Press, San Diego, p 1006

    Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94

    Article  CAS  Google Scholar 

  • White D (2000) The physiology and biochemistry of prokaryotes, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Yavitt JB, Lang GE, Wider RK (1987) Control of carbon mineralization to CH4 and CO2 in anaerobic Sphagnum-derived peat from Big Run Bog, West Virginia. Biogeochemistry 4:141–157

  • Ye R, Jin Q, Bohannan B, Keller JK, McAllister SA, Bridgham SD (2012) pH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic-minerotrophic gradient. Soil Biol Biochem 54:36–47

Download references

Acknowledgments

Guma Lagoon Camp helped during sampling at Guma by providing camping space, self-catering facility, and boat to the research team which included the second author (MJG), Ms Keneilwe Kgokong, Ms Minsozi Zinzy Mujo, Mr Kaelo Makati and Mr Wilfred Khaneguba. Last but not least, we thank two anonymous reviewers whose comments and suggestions helped to improve the paper.

Funding Sources

This study was funded by the global change SysTem for Analysis, Research and Training (START), Washington DC, through a 2009 GEC Water/Land Research Grant to Dr Kelebogile Mfundisi and the Office of Research and Development of the University of Botswana (UB-ORD) research grants to the first author (WRLM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangaliso J. Gondwe.

Appendix

Appendix

See Tables 3 and 4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masamba, W.R.L., Gondwe, M.J. & Murray-Hudson, M. Physicochemical controls of diffusive methane fluxes in the Okavango Delta, Botswana. Wetlands Ecol Manage 23, 617–635 (2015). https://doi.org/10.1007/s11273-015-9407-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-015-9407-5

Keywords

Navigation