Skip to main content

Advertisement

Log in

A hydrologic tracer study in a small, natural wetland in the humid tropics of Costa Rica

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Growing populations and food demand in the tropics are leading to increased environmental pressures on wetland ecosystems, including a greater reliance on natural wetlands for water quality improvement. Effective assessment of wetland treatment potential requires an improved understanding of the hydraulic and biogeochemical factors that govern contaminant behavior, however detailed studies of flow through natural, tropical wetlands are scarce. We performed a tracer study using a conservative salt (potassium bromide) to examine the hydraulic behavior of a small, natural wetland in the Costa Rican humid tropics and modeled observed breakthrough curves using the 1-D advection–dispersion equation. Velocities in the wetland were extremely slow, from less than 4 m day−1 to a maximum of ~30 m day−1, and were distributed across several flowpaths, illustrating a spatial heterogeneity of flow and velocities. Modeled dispersion coefficients were also low (33 ± 33 mday−1). Estimated residence times suggested high potential pollutant removal capacity over a range of influent concentrations, reinforcing the environmental services provided by this and other small tropical wetlands. The study also highlighted how small variations in wetland topography and vegetation yield strong differences in transport patterns that affect transport and mixing in densely vegetated, heterogeneous wetland systems. Empirical data on the hydraulics, and resulting ecosystem functions, of small, distributed wetlands may provide support for improved conservation and management of these important ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Br :

Bromide

BTC:

Breakthrough curve

τ:

Residence time

References

  • Bachand PAM, Horne AJ (2000) Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecol. Eng. 14(1–2):17–32

    Google Scholar 

  • Bear J (1988) Dynamics of fluids in porous media. Dover, Mineola

    Google Scholar 

  • Brouwer R, Langford IH, Bateman IJ, Turner RK (1999) A meta-analysis of wetland contingent valuation studies. Reg. Environ. Change 1(1):47–57. doi:10.1007/S101130050007

    Article  Google Scholar 

  • Bullock A (1993) 13: Perspectives on the hydrology and water resource management of natural freshwater wetlands and lakes in the humid tropics. Hydrology and water management in the humid tropics: hydrological research issues and strategies for water management 273

  • Chambers P, Prepas E, Hamilton H, Bothwell M (1991) Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol. Appl. 1:249–257

    Article  Google Scholar 

  • Choi J, Harvey JW (2000) Quantifying time-varying ground-water discharge and recharge in wetlands of the northern Florida Everglades. Wetlands 20(3):500–511

    Article  Google Scholar 

  • Choi J, Harvey JW (2014) Relative significance of microtopography and vegetation as controls on surface water flow on a low-gradient floodplain. Wetlands 34(1):101–115

  • Daniels AE, Cumming GS (2008) Conversion or conservation? Understanding wetland change in northwest Costa Rica. Ecol. Appl. 18(1):49–63. doi:10.1890/06-1658.1

    Article  PubMed  Google Scholar 

  • Debusk TA, Laughlin RB, Schwartz LN (1996) Retention and compartmentalization of lead and cadmium in wetland microcosms. Water Res. 30(11):2707–2716. doi:10.1016/S0043-1354(96)00184-4

    Article  CAS  Google Scholar 

  • Doble M, Kumar A (2005) Biotreatment of industrial effluents. Butterworth-Heinemann, Burlington

    Google Scholar 

  • Ellison AM (2004) Wetlands of Central America. Wetlands Ecol. Manage. 12(1):3–55

    Article  Google Scholar 

  • Ewel KC (1990) Multiple demands on wetlands. Bioscience 40:660–666

    Article  Google Scholar 

  • Feld CK, Martins da Silva P, Paulo Sousa J, De Bello F, Bugter R, Grandin U, Harrison P (2009) Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos 118(12):1862–1871

    Article  Google Scholar 

  • Gallardo M, César J (2006) Evaluación de la calidad natural del agua y su variación espacio temporal en el humedal la reserva, de la Universidad EARTH, zona caribe de Costa Rica. EARTH University, Lic Ing Agr, Guácimo

    Google Scholar 

  • Gallardo B, Garcia M, Cabezas Á, Gonzalez E, Gonzalez M, Ciancarelli C et al (2008) Macroinvertebrate patterns along environmental gradients and hydrological connectivity within a regulated river-floodplain. Aquat. Sci. 70(3):248–258

    Article  CAS  Google Scholar 

  • Gibbs JP (2001) Wetland loss and biodiversity conservation. Conserv. Biol. 14(1):314–317

    Article  Google Scholar 

  • Gleason RA, Euliss NH Jr (1998) Sedimentation of prairie wetlands. Great Plains Res 363

  • Grismer ME, Tausendschoen M, Shepherd HL (2001) Hydraulic characteristics of a subsurface flow constructed wetland for winery effluent treatment. Water Environ. Res. 73(4):466–477

    Article  CAS  Google Scholar 

  • Grundl T, Small G (1993) Mineral contributions to atrazine and alachlor sorption in soil mixtures of variable organic carbon and clay content. J. Contam. Hydrol. 14(2):117–128

    Article  CAS  Google Scholar 

  • Hansson LA, Brönmark C, Anders Nilsson P, Åbjörnsson K (2005) Conflicting demands on wetland ecosystem services: nutrient retention, biodiversity or both? Freshw. Biol. 50(4):705–714

    Article  CAS  Google Scholar 

  • Harden HS, Chanton JP, Rose JB, John DE, Hooks ME (2003) Comparison of sulfur hexafluoride, fluorescein and rhodamine dyes and the bacteriophage PRD-1 in tracing subsurface flow. J. Hydrol. 277(1–2):100–115. doi:10.1016/S0022-1694(03)00074-X

    Article  CAS  Google Scholar 

  • Harvey JW, Saiers JE, Newlin JT (2005) Solute transport and storage mechanisms in wetlands of the Everglades, south Florida. Water Resour. Res. 41(5):W05009. doi:10.1029/2004wr003507

    Google Scholar 

  • Hey DL, Philippi NS (2006) Flood reduction through wetland restoration: the Upper Mississippi River Basin as a case history. Restor. Ecol. 3(1):4–17

    Article  Google Scholar 

  • Ho DT, Engel VC, Variano EA, Schmieder PJ, Condon ME (2009) Tracer studies of sheet flow in the Florida Everglades. Geophys. Res. Lett. 36(9):L09401

    Google Scholar 

  • Johnston CA (1991) Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Crit. Rev. Environ. Sci. Technol. 21(5–6):491–565

    Google Scholar 

  • Junk WJ (2002) Long-term environmental trends and the future of tropical wetlands. Environ. Conserv. 29(4):414–435

    Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106(1):110–127

    Google Scholar 

  • Kadlec RH (1994) Detention and mixing in free water wetlands. Ecol. Eng. 3(4):345–380

    Article  Google Scholar 

  • Kadlec RH, Wallace S (2008) Treatment wetlands. CRC press

  • Kaplan D, Bachelin M, Muñoz-Carpena R, Rodríguez Chacón W (2011) Hydrological importance and water quality treatment potential of a small freshwater wetland in the humid tropics of Costa Rica. Wetlands 31(6):1117–1130

    Article  Google Scholar 

  • Kaplan DA, Paudel R, Cohen MJ, Jawitz JW (2012) Orientation matters: patch anisotropy controls discharge competence and hydroperiod in a patterned peatland. Geophys Res Lett 39(17)

  • Keddy PA (2010) Wetland ecology: principles and conservation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Keefe SH, Barber LB, Runkel RL, Ryan JN, McKnight DM, Wass RD (2004) Conservative and reactive solute transport in constructed wetlands. Water Resour. Res. 40(1):W01201

    Google Scholar 

  • King AC, Mitchell CA, Howes T (1997) Hydraulic tracer studies in a pilot scale subsurface flow constructed wetland. Water Sci. Technol. 35(5):189–196

    Article  Google Scholar 

  • Kolln F (2008) Metodología para analizar la Dinámica Espacio-Temporal del Flujo Hídrico en el Humedal Natural “La Reserva”, Zona Caribe de Costa Rica. Lic Ing Agr, EARTH University, Guácimo, Costa Rica

    Google Scholar 

  • Leonard L, Croft A, Childers D, Mitchell-Bruker S, Solo-Gabriele H, Ross M (2006) Characteristics of surface-water flows in the ridge and slough landscape of Everglades National Park: implications for particulate transport. Hydrobiologia 569(1):5–22

    Article  Google Scholar 

  • Martinez CJ (2001) Hydraulic characterization and modeling of the Orlando Easterly constructed treatment wetland. University of Florida, Gainesville

    Google Scholar 

  • Martinez CJ, Wise WR (2003) Hydraulic analysis of Orlando easterly wetland. J. Environ. Eng. 129(6):553–560

    Article  CAS  Google Scholar 

  • McLaughlin D, Kaplan D, Cohen MJ (2014) In review. A significant nexus: geographically isolated wetlands influence landscape hydrology. Water Resour Res MS# 203WR015002

  • Min JH, Wise WR (2009) Simulating short-circuiting flow in a constructed wetland: the implications of bathymetry and vegetation effects. Hydrol. Process. 23(6):830–841

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley, New York

    Google Scholar 

  • Mitsch WJ, Tejada J, Nahlik A, Kohlmann B, Bernal B, Hernández CE (2008) Tropical wetlands for climate change research, water quality management and conservation education on a university campus in Costa Rica. Ecol. Eng. 34(4):276–288

    Article  Google Scholar 

  • Nahlik AM, Mitsch WJ (2006) Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecol. Eng. 28(3):246–257

    Article  Google Scholar 

  • Pang L, Goltz M, Close M (2003) Application of the method of temporal moments to interpret solute transport with sorption and degradation. J. Contam. Hydrol. 60(1):123–134

    Article  CAS  PubMed  Google Scholar 

  • Reilly JF, Horne AJ, Miller CD (1999) Nitrate removal from a drinking water supply with large free-surface constructed wetlands prior to groundwater recharge. Ecol. Eng. 14(1):33–47

    Article  Google Scholar 

  • Roggeri H (1995) Tropical freshwater wetlands: a guide to current knowledge and sustainable management. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Runkel RL, McKnight DM, Andrews ED (1998) Analysis of transient storage subject to unsteady flow: diel flow variation in an Antarctic stream. J North Am Benthological Soc 17(2):143–154

    Article  Google Scholar 

  • Saiers JE, Harvey JW, Mylon SE (2003) Surface-water transport of suspended matter through wetland vegetation of the Florida everglades. Geophysical Research Letters 30(19):1987

    Article  Google Scholar 

  • Sánchez-Carrillo S, Angeler DG, Álvarez-Cobelas M, Sánchez-Andrés R (2011) Freshwater wetland eutrophication. In: Eutrophication: causes, consequences and control. Springer, Netherlands, pp 195–210

  • Schaffranek RW, Riscassi AL (2004) Flow velocity, water temperature, and conductivity at selected locations in Shark River Slough, Everglades National Park, Florida; July 1999–July 2003: US Geological Survey

  • Schulz R, Peall SK (2001) Effectiveness of a constructed wetland for retention of nonpoint-source pesticide pollution in the Lourens River catchment, South Africa. Environ Sci Technol 35(2):422–426

    Article  CAS  PubMed  Google Scholar 

  • Šimůnek J, Van Genuchten MT, Šejna M, Toride N, Leij F (1999) The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection–dispersion equation, versions 1.0 and 2.0. International Ground Water Modeling Center

  • Snodgrass JW, Jagoe CH, Bryan AL Jr, Brant HA, Burger J (2000) Effects of trophic status and wetland morphology, hydroperiod, and water chemistry on mercury concentrations in fish. Can J Fish Aquat Sci 57(1):171–180

    Article  Google Scholar 

  • Stern DA, Khanbilvardi R, Alair JC, Richardson W (2001) Description of flow through a natural wetland using dye tracer tests. Ecol Eng 18(2):173–184

    Article  Google Scholar 

  • Toride N, Leij F, Van Genuchten MT (1995) The CXTFIT code for estimating transport parameters from laboratory or filed tracer experiments. US Salinity Laboratory, Riverside

    Google Scholar 

  • Variano EA, Ho DT, Engel VC, Schmieder PJ, Reid MC (2009) Flow and mixing dynamics in a patterned wetland: kilometer-scale tracer releases in the Everglades. Water Resour Res 45(8):W08422

    Google Scholar 

  • Zedler JB (2003) Wetlands at your service: reducing impacts of agriculture at the watershed scale. Front Ecol Environ 1(2):65–72

Download references

Acknowledgments

The authors thank Dr. Wynn Philips and the University of Florida (UF) Gatorade Foundation for the generous funding to support this research. This work would not have been possible without the contributions of Paul Lane, Timothy Townsend, Hwidong Kim (UF) and Julio Tejada, Faelen Tais Kolln, Maria Floridalma Miguel Ros, Natalia Solano Valverde, Pedro Bidegaray, and Daniel Sherrard (EARTH University). M. Bachelin thanks Dr. Andrea Rinaldo (École Polytechnique Fédérale de Lausanne) for M.Sc. co-supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kaplan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, D., Bachelin, M., Yu, C. et al. A hydrologic tracer study in a small, natural wetland in the humid tropics of Costa Rica. Wetlands Ecol Manage 23, 167–182 (2015). https://doi.org/10.1007/s11273-014-9367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-014-9367-1

Keywords

Navigation