Skip to main content

Advertisement

Log in

Impact of Stream Geomorphology on Greenhouse Gas Concentration in a New York Mountain Stream

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

As increased greenhouse gas concentrations (GHG: N2O, CO2, CH4) in our atmosphere remain a major concern, better quantifying GHG fluxes from natural systems is essential. In this study, we investigate GHG concentrations in saturated riparian sediments (dry, wet, mucky), streambed hyporheic zone sediments (pools, riffles), and stream water in a New York mountain stream for summer baseflow conditions, and attempt to identify the primary drivers (e.g., DO, DOC, NO3 , and NH4 +, temp) of GHG concentrations at these locations. Although DO, DOC, NO3 , and NH4 + concentration patterns certainly explained some of the observed trends, the overall differences in GHG abundance in riparian water vs. hyporheic pool water vs. hyporheic riffle water strongly suggest that water velocity/mixing with the atmosphere is a key control on GHG concentration across locations. When all floodplain locations are considered, in-stream pools are hot spots of CO2 and CH4 concentrations relative to other in-stream locations. On the other hand, riparian areas are hot spots of CH4 and CO2 concentrations relative to stream locations. No clear patterns are observed for N2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beaulieu, J. J., Arango, C. P., Hamilton, S. K., & Tank, J. L. (2008). The production and emission of nitrous oxide from headwater streams in the Midwestern United States. Global Change Biology, 14(4), 878–894.

    Article  Google Scholar 

  • Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R. O., Mulholland, P. J., Peterson, B. J., Ashkenas, L. R., Cooper, L. W., Dahm, C. M., Dodds, W. K., Grimm, N. B., Johnson, S. L., McDowell, W. H., Poole, G. C., Valett, H. M., Arango, C. P., Bernot, M. J., Burgin, A. J., Crenshaw, C. L., Helton, H. M., Johnson, L. T., O’Brien, J. M., Potter, J. D., Sheibley, R. W., Sobota, D. J., & Thomas, S. M. (2011). Nitrous oxide emission from denitrification in stream and river networks. PNAS, 108(1), 214–219. doi:10.1073/pnas.1011464108.

    Article  CAS  Google Scholar 

  • Billett, M. F., & Moore, T. R. (2008). Supersaturation and evasion of CO2 and CH4 in surface waters at Mer Bleue peatland. Canada Hydrology Process, 22(12), 2044–2054.

    Article  CAS  Google Scholar 

  • Bowden, W. B., & Bormann, F. H. (1986). Transport and loss of nitrous oxide in soil water after forest clear-cutting. Science, 233(4766), 867.

    Article  CAS  Google Scholar 

  • Burgin, A.J., & Groffman, P.M. (2012). Soil O2 controls denitrification rates and N2O yield in a riparian wetland. Journal of Geophysical Research: Biogeosciences, (2005–2012), 117(G1).

  • Butman, D., & Raymond, P. (2011). Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geoscience. doi:10.1038/NGEO1294.

    Google Scholar 

  • Butman, D., Stackpoole, S., Stets, E., McDonald, C. P., Clow, D. W., & Striegl, R. G. (2016). Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting. PNAS, 113(1), 58–63. doi:10.1073/pnas.1512651112.

    Article  CAS  Google Scholar 

  • Christopher, S. F., Page, B. D., Campbell, J. L., & Mitchell, M. J. (2006). Contrasting stream water NO3 and Ca2 + in two nearly adjacent catchments: the role of soil Ca and forest vegetation. Global Change Biology, 12(2), 364–381.

    Article  Google Scholar 

  • Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and waste water. Washington: American Public Health Association.

    Google Scholar 

  • Clymo, R. S., Pearce, D. M., & Conrad, R. (1995). Methane and carbon dioxide production in, transport through, and efflux from a peatland [and discussion]. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 351(1696), 249–259.

    Article  CAS  Google Scholar 

  • Dent, C. L., Grimm, N. B., & Fisher, S. G. (2001). Multiscale effects of surface–subsurface exchange on stream water nutrient concentrations. Journal of the North American Benthological Society, 20(2), 162–181.

    Article  Google Scholar 

  • Fisher, K., Jacinthe, P. A., Vidon, P., Liu, X., & Baker, M. E. (2014). Nitrous oxide emission from cropland and adjacent riparian buffers in contrasting hydrogeomorphic settings. Journal of Environmental Quality, 43(1), 338–348. doi:10.2134/jeq2013.06.0223.

    Article  CAS  Google Scholar 

  • Gomez, J., Vidon, P., Gross, J., Beier, C., Caputo, J., & Mitchell, M. (2016). Estimating greenhouse gas emissions at the soil-atmosphere interface in forested watersheds of the US Northeast. Environmental Monitoring and Assessment, 188(295), 1–16. doi:10.1007/s10661-016-5297-0.

    CAS  Google Scholar 

  • Hedin, L. O., von Fischer, J. C., Ostrom, N. E., Kennedy, B. P., Brown, M. G., & Robertson, G. P. (1998). Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces. Ecology, 79(2), 684–703.

    Google Scholar 

  • Hefting, M. M., Bobbink, R., & de Caluwe, H. (2003). Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. Journal of Environmental Quality, 32(4), 1194–1203.

    Article  CAS  Google Scholar 

  • Hope, D., Palmer, S., Billett, M. F., & Dawson, J. J. (2001). Carbon dioxide and methane evasion from a temperate peatland stream. Limnology Oceanography, 46(4), 847–857.

    Article  CAS  Google Scholar 

  • Jacinthe, P. A., & Groffman, P. M. (2001). Silicone rubber sampler to measure dissolved gases in saturated soils and waters. Soil Biology and Biochemistry, 33(7), 907–912.

    Article  CAS  Google Scholar 

  • Jacinthe, P. A., & Lal, R. (2004). Effects of soil cover and land-use on the relations flux-concentration of trace gases. Soil Science, 169(4), 243–259.

    Article  CAS  Google Scholar 

  • Jacinthe, P. A., Bills, J. S., Tedesco, L. P., & Barr, R. C. (2012). Nitrous oxide emission from riparian buffers in relation to vegetation and flood frequency. Journal of Environmental Quality. doi:10.2134/jeq2011.0308.

    Google Scholar 

  • Kasahara, T., & Hill, A. R. (2005). Effects of riffle-step restoration on hyporheic zone chemistry in N-rich lowland streams. Canadian Journal of Fisheries and Aquatic Sciences, 63, 120–133.

    Article  Google Scholar 

  • McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C. A., Mayorga, E., McDowell, W. H., & Pinay, G. (2003). Biogeochemical hotspots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6, 301–312.

    Article  CAS  Google Scholar 

  • Mitchell, M. J., Raynal, D. J., & Driscoll, C. T. (2009). Response of Adirondack ecosystems to atmospheric pollutants and climate change at the Huntington forest and arbutus watershed: research findings and implications for public policy. Synthesis report. Albany: New York State Energy Research and Development Authority (NYSERDA).

    Google Scholar 

  • Morse, J. L., Ardón, M., & Bernhardt, E. S. (2012). Greenhouse gas fluxes in southeastern US coastal plain wetlands under contrasting land uses. Ecological Application, 22(1), 264–280.

    Article  Google Scholar 

  • Mosier, A., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S., & Van Cleemput, O. (1998). Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutrient Cycling in Agroecosystems, 52(2–3), 225–248.

    Article  CAS  Google Scholar 

  • Naiman, R. J., Decamps, H., & McClain, M. E. (2010). Riparia: ecology, conservation, and management of streamside communities. London: Academic Press, Elsevier. 430 pages.

    Google Scholar 

  • Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R. G., Mayorga, E., Humborg, C., Kortelainen, P., Durr, H., Meybeck, M., Ciais, P., & Guth, P. (2013). Global carbon dioxide emissions from inland waters. Nature, 503, 355–359. doi:10.1038/nature12760.

    Article  CAS  Google Scholar 

  • Rosamond, M. S., Thuss, S. J., & Schiff, S. L. (2012). Dependence of riverine nitrous oxide emissions on dissolved oxygen levels. Nature Geoscience, 5, 715–718.

    Article  CAS  Google Scholar 

  • Rothfuss, F., & Conrad, R. (1998). Effect of gas bubbles on the diffusive flux of methane in anoxic paddy soil. Limnology and Oceanography, 43(7), 1511–1518.

    Article  CAS  Google Scholar 

  • Sanders, I. A., Heppell, C. M., Cotton, J. A., Wharton, G., Hildrew, A. G., Flowers, E. J., & Trimmer, M. (2007). Emission of methane from chalk streams has potential implications for agricultural practices. Freshwater Biology, 52(6), 1176–1186.

    Article  CAS  Google Scholar 

  • Somers, R. C. (1986). Soil classification, genesis, morphology and variability of soils found within the central Adirondack region of New York, State University of New York. Syracuse: College of Environmental Science and Forestry. http://www.esf.edu/aec/publications/.

    Google Scholar 

  • Stanley, E. H., Casson, N. J., Christel, S. T., Crawford, J. T., Loken, L. C., & Oliver, S. K. (2016). The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecological Monographs, 86, 146–171. doi:10.1890/15-1027.

    Article  Google Scholar 

  • Ullah, S., & Moore, T.R. (2011). Biogeochemical controls on methane, nitrous oxide, and carbon dioxide fluxes from deciduous forest soils in eastern Canada. Journal of Geophysical Research: Biogeosciences, (2005–2012), 116(G3).

  • van Hulzen, J. B., Segers, R., van Bodegom, P. M., & Leffelaar, P. A. (1999). Temperature effects on soil methane production: an explanation for observed variability. Soil Biology and Biochemistry, 31, 1919–1929. doi:10.1016/S0038-0717(99)00109-1.

    Article  Google Scholar 

  • Vidon, P., & Hill, A. R. (2004). Denitrification and patterns of electron donors and acceptors in eight riparian zones with contrasting hydrogeology. Biogeochemistry, 71, 259–283. doi:10.1007/s10533-004-9684-1.

    Article  CAS  Google Scholar 

  • Vidon, P., Allan, C., Burns, D., Duval, T. P., Gurwick, N., Inamdar, S., Lowrance, R., Okay, J., Scott, D., & Sebestyen, S. (2010). Hot spots and hot moments in riparian zones: potential for improved water quality management. Journal of the American Water Resources Association, 46(2), 278–298.

    Article  CAS  Google Scholar 

  • Werner, S. F., Browne, B. A., & Driscoll, C. T. (2012). Three-dimensional spatial patterns of trace gas concentrations in baseflow-dominated agricultural streams: implications for surface-ground water interactions and biogeochemistry. Biogeochemistry, 107, 319–338.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by a US Geological Survey 104B grant (Award# 61103-10081) to P. Vidon through the New York Water Resources Institute in partnership with the New York Department of Environmental Conservation—Hudson River Estuary Program. Satish Serchan was supported though the US Department of Agriculture Forest Service Federal Pathway Program during his time at SUNY-ESF. The support of the New York State Energy Research and Development Authority (NYSERDA) in providing funds for the monitoring at the Arbutus Watershed and Huntington Forest is also greatly appreciated. The authors would also like to thank Pat McHale, Joshua Gomez, Cheryl Glor, and the staff of the Adirondack Ecological Center in Newcomb, NY, for their help in the field and laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Vidon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidon, P., Serchan, S. Impact of Stream Geomorphology on Greenhouse Gas Concentration in a New York Mountain Stream. Water Air Soil Pollut 227, 428 (2016). https://doi.org/10.1007/s11270-016-3131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3131-5

Keywords

Navigation