Skip to main content

Advertisement

Log in

Hydrated Oil Shale Ash Mitigates Greenhouse Gas Emissions from Horizontal Subsurface Flow Filters for Wastewater Treatment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Previous pilot-scale studies have shown outstanding levels of efficiency in phosphorus removal by using hydrated oil shale ash (HOSA) sediments in horizontal subsurface flow (HSSF) filters with low greenhouse gas emissions. However, no long-term full-scale experiment has been conducted using this material. From September 2013 to December 2015, two HSSF filters with different hydraulic loading regimes (NH1 with a stable loading regime and NH2 with a fluctuating regime), used to treat municipal wastewater, were analysed to estimate greenhouse gas (GHG) fluxes and to develop a treatment system with minimised GHG emissions. The fluxes of CO2, CH4 and N2O, as well as their emission factors were significantly lower when compared with studies where regular filter materials (sand, gravel, etc.) are in use. The fluctuating loading regime significantly increased CO2 and N2O fluxes (median values of −3.3 and 2.6 mg CO2−C m−2 h−1, and 5.7 and 8.6 μg N2O−N m−2 h−1 for NH1 and NH2 regimes, respectively), whereas no impact could be seen on CH4 emissions (median 93.3 and 95.6 μg CH4−C m−2 h−1, for NH1 and NH2, respectively). All GHG emissions were strongly affected by the chemical composition of the water entering into the system. The water purification efficiency of the system was satisfactory for most water quality parameters and excellent for phosphorus. Thus, the HOSA-filled filters have a good potential for municipal wastewater treatment with low GHG emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA-AWWA-WEF (2005). Standard methods for the examination of water and wastewater, 21th ed. Washington D.C.: American Public Health Organisation.

  • Barbera, A. C., Borin, M., Ioppolo, A., Cirelli, G. L., & Maucieri, C. (2014). Carbon dioxide emissions from horizontal sub-surface constructed wetlands in the Mediterranean Basin. Ecological Engineering, 64, 57–61.

    Article  Google Scholar 

  • Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 368, 20130122.

    Article  Google Scholar 

  • Cheung, K. C., & Venkitachalam, T. H. (2000). Improving phosphate removal of sand infiltration system using alkaline fly ash. Chemosphere, 41, 243–249.

    Article  CAS  Google Scholar 

  • Garcia, J. L., Patel, B. K. C., & Ollivier, B. (2000). Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe, 6, 205–226.

    Article  CAS  Google Scholar 

  • Gauci, V., Fowler, D., Chapman, S. J., & Dise, N. B. (2004). Sulfate deposition and temperature controls on methane emission and sulfur forms in peat. Biogeochemistry, 71, 141–162.

    Article  CAS  Google Scholar 

  • Gruneberg, B., & Kern, J. (2001). Phosphorus retention capacity of iron-ore and blast furnace slag in subsurface flow constructed wetlands. Water Science and Technology, 44, 69–75.

    CAS  Google Scholar 

  • Huang, L., Gao, X., Guo, J., Ma, X., & Liu, M. (2013). A review on the mechanisms and affecting factors of nitrous oxide emission in constructed wetlands. Environmental Earth Sciences, 68, 2171–2180.

    Article  CAS  Google Scholar 

  • Inamori, R., Wang, Y. H., Yamamoto, T., Zhang, J. X., Kong, H. N., Xu, K. Q., & Inamori, Y. (2008). Seasonal effect on N2O formation in nitrification in constructed wetlands. Chemosphere, 73, 1071–1077.

    Article  CAS  Google Scholar 

  • IPCC. (2013). The Physical, Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Jahangir, M. M. R., Richards, K. G., Healy, M. G., Gill, M. G., Müller, C., Johnston, P., & Fenton, O. (2016). Carbon and nitrogen dynamics and greenhouse gas emissions in constructed wetlands treating wastewater: a review. Hydrology and Earth System Sciences, 20, 109–123.

    Article  Google Scholar 

  • Kaasik, A., Vohla, C., Mõtlep, R., Mander, Ü., & Kirsimäe, K. (2008). Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands. Water Research, 42, 1315–1323.

    Article  CAS  Google Scholar 

  • Kadlec, R. H., Wallace, S.D. (2009). Treatment Wetlands. Second Edition. 1016

  • Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M., & van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research, 43, 4093–4103.

    Article  CAS  Google Scholar 

  • Karabelnik, K., Kõiv, M., Kasak, K., Jenssen, P. D., & Mander, Ü. (2012). High-strength greywater treatment in compact hybrid filter systems with alternative substrates. Ecological Engineering, 49, 84–92.

    Article  Google Scholar 

  • Kasak, K., Mander, Ü., Truu, J., Truu, M., Järveoja, J., Maddison, M., & Teemusk, A. (2015). Alternative filter material removes phosphorus and mitigates greenhouse gas emission in horizontal subsurface flow filters for wastewater treatment. Ecological Engineering, 77, 242–249.

    Article  Google Scholar 

  • Klimeski, A., Uusitalo, R., & Turtola, E. (2014). Screening of Ca- and Fe-rich materials for their applicability as phosphate-retaining filters. Ecological Engineering, 68, 143–154.

    Article  Google Scholar 

  • Kõiv, M., Kriipsalu, M., Vohla, C., & Mander, Ü. (2009). Hydrated oil shale ash and mineralized peat as alternative filter materials for landfill leachate treatment in vertical flow constructed wetlands. Fresen Environ Bull, 18, 189–195.

    Google Scholar 

  • Kõiv, M., Liira, M., Mander, Ü., Mõtlep, R., Vohla, C., & Kirsimäe, K. (2010). Phosphorus removal using Ca-rich hydrated oil shale ash as filter material—the effect of different phosphorus loadings and wastewater compositions. Water Research, 44, 5232–5239.

    Article  Google Scholar 

  • Kool, D. M., Dolfing, J., Wrange, N., & van Groenigen, J. W. (2011). Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biology and Biochemistry, 43, 174–178.

    Article  CAS  Google Scholar 

  • Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology, 37, 25–50.

    Article  Google Scholar 

  • Liira, M., Kõiv, M., Mander, Ü., Mõtlep, R., Vohla, C., & Kirsimäe, K. (2009). Active filtration of phosphorus on ca-rich hydrated oil shale ash: does longer retention time improve the process? Environmental Science and Technology, 43, 3809–3814.

    Article  CAS  Google Scholar 

  • Loftfield, N., Flessa, H., Augustin, J., & Beese, F. (1997). Automated gas chromatographic system for rapid analysis of the atmospheric trace gases methane, carbon dioxide, and nitrous oxide. Journal of Environmental Quality, 26, 560–564.

    Article  CAS  Google Scholar 

  • Mander, Ü., Kuusemets, V., Lõhmus, K., Mauring, T., Teiter, S., & Augustin, J. (2003). Nitrous oxide, dinitrogen and methane emission in a subsurface flow constructed wetland. Water Science and Technology, 48, 135–142.

    CAS  Google Scholar 

  • Mander, Ü., Maddison, M., Soosaar, K., & Karabelnik, K. (2011). The impact of pulsing hydrology and fluctuating water table on greenhouse gas emissions from constructed wetlands. Wetlands, 31, 1023–1032.

    Article  Google Scholar 

  • Mander, Ü., Järveoja, J., Maddison, M., Soosaar, K., Aavola, R., Ostonen, I., & Salm, J. O. (2012). Reed canary grass cultivation mitigates greenhouse gas emissions from abandoned peat extraction areas. Glob Change Biol Bioenergy, 4, 462–474.

    Article  CAS  Google Scholar 

  • Mander, Ü., Dotro, G., Ebie, Y., Towprayoon, S., Chiemchaisri, C., Nogueira, S. F., Jamsranjav, B., Kasak, K., Truu, J., Tournebize, J., & Mitsch, W. J. (2014a). Greenhouse gas emission in constructed wetlands for wastewater treatment: a review. Ecological Engineering, 66, 19–35.

    Article  Google Scholar 

  • Mander, Ü., Tournebize, J., Kasak, K., & Mitsch, W. J. (2014b). Climate regulation by free water surface constructed wetlands for wastewater treatment and created riverine wetlands. Ecological Engineering, 72, 103–115.

    Article  Google Scholar 

  • Mõtlep, R., Sild, T., Puura, E., & Kirsimae, K. (2010). Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments. Journal of Hazardous Materials, 184, 567–573.

    Article  Google Scholar 

  • Pangala, S. R., Reay, D. S., & Heal, K. V. (2010). Mitigation of methane emissions from constructed farm wetlands. Chemosphere, 78, 493–499.

    Article  CAS  Google Scholar 

  • Picek, T., Cizkova, H., & Dusek, J. (2007). Greenhouse gas emissions from a constructed wetland—plants as important sources of carbon. Ecological Engineering, 31, 98–106.

    Article  Google Scholar 

  • Reddy, K. R., & DeLaunne, R. D. (2008). Biogeochemistry of Wetlands: Science and Applications. 800p.

  • Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., Lander, E. S., Mitzenmacher, M., & Sabeti, P. C. (2011). Detecting novel associations in large data sets. Science, 334, 1518–1524.

    Article  CAS  Google Scholar 

  • Shahabadi, M. B., Yerushalmi, L., & Haghighat, F. (2009). Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants. Water Research, 43, 2679–2687.

    Article  Google Scholar 

  • Søvik, A. K., Augustin, J., Heikkinen, K., Huttunen, J. T., Necki, J. M., Karjalainen, S. M., Kløve, B., Liikanen, A., Mander, Ü., Puustinen, M., Teiter, S., & Wachniew, P. (2006). Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. Journal of Environmental Quality, 35, 2360–2373.

    Article  Google Scholar 

  • Teepe, R., Brumme, R., & Beese, F. (2001). Nitrous oxide emissions from soil during freezing and thawing periods. Soil Biology and Biochemistry, 33, 1269–1275.

    Article  CAS  Google Scholar 

  • Thomson, A. J., Giannopoulos, G., Pretty, J., Baggs, E. M., & Richardson, D. J. (2012). Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos T R Soc B, 367, 1157–1168.

    Article  CAS  Google Scholar 

  • Uibu, M., Kuusik, R., & Veskimäe, H. (2008). Seasonal binding of atmospheric CO(2) by oil shale ash. Oil Shale, 25, 254–266.

    Article  CAS  Google Scholar 

  • Uibu, M., Velts, O., & Kuusik, R. (2010). Developments in CO2 mineral carbonation of oil shale ash. Journal of Hazardous Materials, 174, 209–214.

    Article  CAS  Google Scholar 

  • Velts, O., Uibu, M., Kallas, J., & Kuusik, R. (2011). Waste oil shale ash as a novel source of calcium for precipitated calcium carbonate: carbonation mechanism, modeling, and product characterization. Journal of Hazardous Materials, 195, 139–146.

    Article  CAS  Google Scholar 

  • Vohla, C., Põldvere, E., Noorvee, A., Kuusemets, V., & Mander, Ü. (2005). Alternative filter media for phosphorous removal in a horizontal subsurface flow constructed wetland. J Environ Sci Heal A, 40, 1251–1264.

    Article  CAS  Google Scholar 

  • Vymazal, J. (2011). Constructed wetlands for wastewater treatment: five decades of experience. Environmental Science and Technology, 45, 61–69.

    Article  CAS  Google Scholar 

  • Wunderlin, P., Lehmann, M. F., Siegrist, H., Tuzson, B., Joss, A., Emmenegger, L., & Mohn, J. (2013). Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment. Environmental Science and Technology, 47, 1339–1348.

    Article  CAS  Google Scholar 

  • Yan, C., Zhang, H., Li, B., Wang, D., Zhao, Y., & Xheng, Z. (2012). Effects of influent C/N ratios on CO2 and CH4 emissions from vertical subsurface flow constructed wetlands treating syntehic municipal wastewater. Journal of Hazardous Materials, 203, 188–194.

    Article  Google Scholar 

  • Zurita, F., De Anda, J., & Belmont, M. A. (2009). Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands. Ecological Engineering, 35, 861–869.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Education and Science of Estonia (grant SF0180127s08), the Estonian Research Council (grant IUT2-16); and the EU through the European Regional Development Fund (The R&D programme of environmental protection and technology (KESTA), Centre of Excellence ENVIRON and Centre of Excellence EcolChange).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülo Mander.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasak, K., Mõtlep, R., Truu, M. et al. Hydrated Oil Shale Ash Mitigates Greenhouse Gas Emissions from Horizontal Subsurface Flow Filters for Wastewater Treatment. Water Air Soil Pollut 227, 320 (2016). https://doi.org/10.1007/s11270-016-3007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3007-8

Keywords

Navigation