Skip to main content
Log in

Adsorption of Methylene Blue by an Efficient Activated Carbon Prepared from Citrullus lanatus Rind: Kinetic, Isotherm, Thermodynamic, and Mechanism Analysis

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

By using the activated carbon obtained from Citrullus lanatus rind by zinc chloride activation, methylene blue (MB) removal from aqueous solutions was studied, and the adsorption mechanism was solved through Weber-Morris intraparticle diffusion model, Bangham model, Boyd model, Fourier transform infrared spectra, and scanning electron microscopy. The effects of adsorption parameters (adsorbent concentration, temperature, initial dye concentration, and pH) were investigated. The equilibrium data of MB adsorption were described by applying the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models. The obtained results from adsorption isotherms indicated that Langmuir model is the best-fitted model with the maximum adsorption capacities of 231.48, 243.90, 244.50, and 259.74 mg/g at 25, 35, 45, and 55 °C, respectively. The analysis of the kinetic data by pseudo-first-order, pseudo-second-order, and Elovich models displayed that MB adsorption followed pseudo-second-order model. Also, the date obtained from intraparticle diffusion model, Bangham model, and Boyd model presented that intraparticle diffusion, pore diffusion, and film diffusion played significant role in MB adsorption. The thermodynamic studies demonstrated that MB adsorption onto the activated carbon obtained from C. lanatus rind was physical, spontaneous, feasible, and endothermic. Thus, the activated carbon prepared from C. lanatus rind has been an efficient adsorbent for MB removal from an aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aharoni, C., & Ungarish, M. (1977). Kinetics of activated chemisorption. Part 2—theoretical models. Journal of the Chemical Society, Faraday Transactions, 73, 456–464.

    Article  CAS  Google Scholar 

  • Ai, L., Zhang, C., Liao, F., Wang, Y., Li, M., Meng, L., & Jiang, J. (2011). Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. Journal of Hazardous Materials, 198, 282–290.

    Article  CAS  Google Scholar 

  • Angın, D., Köse, T. E., & Selengil, U. (2013). Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff. Applied Surface Science, 280, 705–710.

    Article  Google Scholar 

  • Boparai, H. K., Joseph, M., & O’Carroll, D. M. (2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nanozerovalent iron particles. Journal of Hazardous Materials, 186, 458–465.

    Article  CAS  Google Scholar 

  • Boyd, G. E., Adamson, A. W., & Myers, L. S. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. Journal of American Chemical Society, 69, 2836–2848.

    Article  CAS  Google Scholar 

  • Chien, S. H., & Clayton, W. R. (1980). Adsorption of hexavalent chromium from aqueous solutions by wheat bran. Soil Science Society of America Journal, 44, 265–268.

    Article  CAS  Google Scholar 

  • Deng, H., Lu, J., Li, G., Zhang, G., & Wang, X. (2011). Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chemical Engineering Journal, 172, 326–334.

    Article  CAS  Google Scholar 

  • Dubinin, M. M., & Radushkevich, L. V. (1947). The equation of the characteristic curve of activated charcoal. Proc Academy of Sciences of the USSR Physical Chemistry Section, 55, 331–337.

    Google Scholar 

  • Ekrami, E., Dadashian, F., & Arami, M. (2015). Adsorption of methylene blue by waste cotton activated cotton: equilibrium, kinetics, and thermodynamic studies. Desalination and Water Treatment. doi:10.1080/19443994.2015.1015173.

    Google Scholar 

  • Feng, Y., Yang, F., Wang, Y., Ma, L., Wu, Y., Kerry, P. G., & Yang, L. (2011). Basic dye adsorption onto an agro-based waste material—sesame hull (Sesamum indicum L.). Bioresource Technology, 102, 10280–10285.

    Article  CAS  Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Über die adsorption in lösungen. Zeitschrift fur PhysikalischeChemie, 57, 385–470.

    CAS  Google Scholar 

  • Fu, J., Chen, Z., Wang, M., Liu, S., Zhang, J., Zhang, J., Han, R., & Xu, Q. (2015). Adsorption of methylene blue by a high efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 259, 53–61.

    Article  CAS  Google Scholar 

  • Gao, Q., Liu, H., Cheng, C., Li, K., Zhang, C., & Li, Y. (2013). Preparation and characterization of activated carbon from wool waste and the comparison of muffle furnace and microwave heating methods. Powder Technology, 249, 234–240.

    Article  CAS  Google Scholar 

  • Geçgel, Ü., Kocabıyık, B., & Üner, O. (2015). Adsorptive removal of methylene blue from aqueous solution by the activated carbon obtained from the fruit of catalpa bignonioides. Water Air &Soil Pollution, 226(238), 1–14.

    Google Scholar 

  • González, P. G., Hernández-Quiroz, T., & Garcia-González, L. (2014). The use of experimental design and response surface methodologies for the synthesis of chemically activated carbons produced from bamboo. Fuel Process Technology, 127, 133–139. doi:10.1016/j.fuproc.2014.05.035.

    Article  Google Scholar 

  • Gupta, S. S., & Bhattacharyya, K. G. (2011). Kinetics of adsorption of metal ions on inorganic materials: a review. Advances in Colloid and Interface Science, 162, 39–58.

    Article  Google Scholar 

  • Hamdaoui, O. (2006). Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. Journal of Hazardous Materials, 135, 264–273.

    Article  CAS  Google Scholar 

  • Hameed, B. H., Tan, I. A. W., & Ahmad, A. L. (2008). Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. Chemical Engineering Journal, 144, 235–244.

    Article  CAS  Google Scholar 

  • Han, X., Chu, L., Liu, S., Chen, T., Ding, C., Yan, J., Cui, L., & Quan, G. (2015). Removal of methylene blue from aqueous solution using porous biochar obtained by KOH activation of peanut shell biochar. BioResources, 10(2), 2836–2849.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Islam, M. A., Tan, I. A. W., Benhouria, A., Asif, M., & Hameed, B. H. (2015). Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation. Chemical Engineering Journal, 270, 187–195.

    Article  CAS  Google Scholar 

  • Kasgoz, H., & Durmus, A. (2008). Dye removal by a novel hydrogel-clay nanocomposite with enhanced swelling properties. Polymers for Advanced Technologies, 19, 838–845.

    Article  CAS  Google Scholar 

  • Kavitha, D., & Namasivayam, C. (2007). Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technology, 98, 14–21.

    Article  CAS  Google Scholar 

  • Koca, I., Hasbay, I., Karadeniz, B., & Koca, A. F. (2014). Changes in the physicochemical and antioxidant characteristics of watermelon during pekmez production. Quality Assurance and Safety of Crops & Foods, 6(4), 411–418.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). Zurtheorie der sogenannten adsorption gelösterstoffe. Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of American Chemical Society, 38, 2221–2295.

    Article  CAS  Google Scholar 

  • Lee, Y.-W., & Park, J.-W. (2002). Adsorption characteristics of SO2 on activated carbon prepared from coconut shell with potassium hydroxide activation. Environmental Science & Technology, 36, 1086–1092.

    Article  CAS  Google Scholar 

  • Li, L., Liu, S., & Zhu, T. (2010). Application of activated carbon derived from scrap tires for adsorption of Rhodamine B. Journal of Environmental Sciences, 22, 1273–1280.

    Article  CAS  Google Scholar 

  • Liu, Y., Wang, J., Zheng, Y., & Wang, A. (2012). Adsorption of methylene blue by kapok fiber treated by sodium chlorite optimized with response surface methodology. Chemical Engineering Journal, 184, 248–255.

    Article  CAS  Google Scholar 

  • Lowell, S., & Shields, J. E. (1991). Powder surface area and porosity (3rd ed.). London: Chapman & Hall.

    Google Scholar 

  • Mahmoodian, H., Moradi, O., Shariatzadeha, B., Salehf, T. A., Tyagi, I., Maity, A., Asif, M., & Gupta, V. K. (2015). Enhanced removal of methyl orange from aqueous solutions by poly HEMA-chitosan-MWCNT nano-composite. Journal of Molecular Liquids, 202, 189–198.

    Article  CAS  Google Scholar 

  • Malekbala, M. R., Khan, M. A., Hosseini, S., Abdullah, L. C., & Choong, T. S. Y. (2015). Adsorption/desorption of cationic dye on surfactant modified mesoporous carbon coated monolity: equilibrium, kinetic and thermodynamic studies. Journal of Industrial and Engineering Chemistry, 21, 369–377.

    Article  CAS  Google Scholar 

  • Martins, A. C., Pezoti, O., Cazetta, A. L., Bedin, K. C., Yamazaki, D. A. S., Bandoch, G. F. G., Asefa, T., Visentainer, J. V., & Almeida, V. T. (2015). Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chemical Engineering Journal, 260, 291–299.

    Article  CAS  Google Scholar 

  • Milonjić, S. K., Ruvarac, A. L., & Šušić, M. V. (1975). The heat of immersion of natural magnetite in aqueous solutions. ThermochimicaActa, 11, 261–266.

    Article  Google Scholar 

  • Njoku, V. O., Foo, K. Y., Asif, M., & Hameed, B. H. (2014). Preparation of activated carbons from rambutan (Nepheliumlappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption. Chemical Engineering Journal, 222, 108–119. doi:10.1016/j.cej.2013.02.029.

    Google Scholar 

  • Pezoti, O., Cazetta, A. L., Bedin, K. C., Souza, L. S., Martins, A. C., Silva, T. L., Santos Junior, O. O., Visentainer, J. V., & Almeida, V. C. (2016). NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies. Chemical Engineering Journal, 288, 778–788.

    Article  CAS  Google Scholar 

  • Pezoti Junior, O., Cazetta, A. L., Gomes, R. C., Barizao, E. O., Souza, I. P. A. F., Martins, A. C., Asefa, T., & Almeida, V. C. (2014). Synthesis of ZnCl2-activated carbon from macadamia nut endocarp (Macadamia integrifolia) by microwave-assisted pyrolysis: optimization using RSM and methylene blue adsorption. Journal of Analytical and Applied Pyrolysis, 105, 166–176.

    Article  Google Scholar 

  • Przystas, W., Zablocka-Godlewska, E., & Grabinska-Sota, E. (2015). Efficacy of fungal decolorization of a mixture of dyes belonging to different classes. Brazilian Journal of Microbiology, 46(2), 415–424.

    Article  Google Scholar 

  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials, 177, 70–80.

    Article  CAS  Google Scholar 

  • Rahmani-Sani, A., Hosseini-Bandegharaei, A., Hosseini, S. H., Kharghani, K., Zarei, H., & Rastegar, A. (2015). Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid. Journal of Hazardous Materials, 286, 152–163.

    Article  CAS  Google Scholar 

  • Ramana, D. K. V., & Min, K. (2015). Activated carbon produced from pigeon peas hulls waste as a low-cost agro-waste adsorbent for Cu(II) and Cd(II) removal. Desalination and Water Treatment. doi:10.1080/19443994.2015.1013509.

    Google Scholar 

  • Rashidzadeh, A., Olad, A., & Salari, D. (2015). The effective removal of methylene blue dye from aqueous solutions by NaAlg-g-poly(acrylic acid-co-acryl amide)/clinoptilolite hydrogel nanocomposite. Fibers and Polymers, 16(2), 354–362. doi:10.1007/s12221-015-0354-9.

    Article  CAS  Google Scholar 

  • Saleh, T. A., & Gupta, V. K. (2014). Processing methods, characteristics and adsorption behavior of tire derived carbons: a review. Advances in Colloid and Interface Science, 211, 93–101.

    Article  CAS  Google Scholar 

  • Sellin, R., Clacens, J.-M., & Coutanceau, C. (2010). A thermogravimetric analysis/mass spectroscopy study of the thermal and chemical stability of carbon in the Pt/C catalytic system. Carbon, 48, 2244–2254.

    Article  CAS  Google Scholar 

  • Sheha, R. R., & Metwally, E. (2007). Equilibrium isotherm modeling of cesium adsorption onto magnetic materials. Journal of Hazardous Materials, 143, 354–361.

    Article  CAS  Google Scholar 

  • Shi, L., Zhang, G., Wei, D., Yan, T., Xue, X., Shi, S., & Wei, Q. (2014). Preparation and utilization of anaerobic granular sludge-based biochar for the adsorption of methylene blue from aqueous solutions. Journal of Molecular Liquids, 198, 334–340.

    Article  CAS  Google Scholar 

  • Temkin, M. I., & Pyzhev, V. (1940). Kinetic of ammonia synthesis on promoted iron catalyst. Acta PhysChim USSR, 12, 327–356.

    CAS  Google Scholar 

  • Üner, O., Geçgel, Ü., & Bayrak, Y. (2015). Preparation and characterization of mesoporous activated carbons from waste watermelon rind by using the chemical activation method with zinc chloride. Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2015.12.004.

    Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetic of adsorption on carbon from solutions. Journal of the Sanitary Engineering Division ASCE, 89, 31–60.

    Google Scholar 

  • Wong, A., Koutsogiannis, Z., Greene, S., & McIntyre, S. (2013). A case of hemolysis and methemoglobinemia following amyl nitrite use in an individual with G6PD deficiency. Journal of Acute Medicine, 3, 23–25.

    Article  Google Scholar 

  • Yang, J., & Qiu, K. (2010). Preparation of activated carbon from walnut shell via vacuum chemical activation and their application for methylene blue removal. Chemical Engineering Journal, 165, 209–217.

    Article  CAS  Google Scholar 

  • Yener, J., Kopac, T., Dogu, G., & Dogu, T. (2008). Dynamic analysis of sorption of methylene blue on granular and powdered activated carbon. Chemical Engineering Journal, 144, 400–406.

    Article  CAS  Google Scholar 

  • Zhang, L., Song, X., Liu, X., Yang, L., Pan, F., & Lv, J. (2011). Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chemical Engineering Journal, 178, 26–33.

    Article  CAS  Google Scholar 

  • Zhong, Z. Y., Yang, Q., Li, X. M., Luo, K., Liu, Y., & Zeng, G. M. (2012). Preparation of peanut hull-based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol Brilliant Blue R adsorption. Industrial Crops and Products, 37(1), 178–185. doi:10.1016/j.indcrop.2011.12.015.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by Trakya University Research Fund under the project number of TÜBAP 2014/130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Üner.

Additional information

Highlights

● The adsorbent produced from Citrullus lanatus rind had high adsorption affinity and adsorption capacity of 231.48 mg/g for methylene blue dye.

● MB adsorption mechanism onto the adsorbent was explained.

● Intraparticle diffusion, film diffusion, and pore diffusion played significant role in MB adsorption.

● The best models were Langmuir model and pseudo-second-order model to describe equilibrium data and kinetic data, respectively.

● MB adsorption was physical, spontaneous, endothermic, and thermodynamically feasible.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Üner, O., Geçgel, Ü. & Bayrak, Y. Adsorption of Methylene Blue by an Efficient Activated Carbon Prepared from Citrullus lanatus Rind: Kinetic, Isotherm, Thermodynamic, and Mechanism Analysis. Water Air Soil Pollut 227, 247 (2016). https://doi.org/10.1007/s11270-016-2949-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2949-1

Keywords

Navigation