Skip to main content
Log in

Removal of Cu(II) from Water Samples Using Glycidyl Methacrylate-Based Polymer Functionalized with Diethylenetriamine Tetraacetic Acid: Investigation of Adsorption Characteristics

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A macroporous glycidyl methacrylate (GMA)–methylmethacrylate (MMA)–divinyl benzene (DVB) terpolymer functionalized with diethylenetriamine tetraacetic acid (DTTA) (GMA-MMA-DVB-DTTA) sorbent was successfully applied for the uptake of Cu(II) from the aqueous solutions. Adsorption characteristics for copper ion were investigated by a batch sorption in under different experimental conditions, and the optimum parameters for the quantitative sorption of Cu(II) ion were found to be as follows: pH of 7.0, a contact time of 30.0 min, and a sorbent amount/solution volume ratio of 1.5 mg/mL. The quantitative elution from the sorbent was performed with 1.0 M HCl (>95 %). Among three kinetic models, the pseudo-second-order kinetic model provides the best correlation for the process. The nonlinear resolution of the Langmuir isotherm equation has been found to show the closest fit to the equilibrium data. The results indicates that the presence of the competitor ions (Al, Ba, Co, Mn, Mg, and Ni) has no obvious influence on the sorption of Cu(II) ion under the optimum conditions and the polymeric sorbent has a good selectivity for the sorption of Cu(II) ions with a sorption percent of ≥99 %. Sorption/desorption studies were performed for ultrapure, tap, bottled drinking and industrial wastewater samples, and it is examined that the proposed method has been successfully applied to the real samples for the removal of Cu(II) acceptable accuracy and precision. The results of this work indicated that the polymeric sorbent could be a simple and suitable method for the effective removal of Cu(II) ions from waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alshahateet, S. F., Jiries, A. G., Al-Trawneh, S. A., Eldouhaibi, A. S., & Al-Mahadeen, M. M. (2016). Kinetic, equilibrium and selectivity studies of heavy metal ions (Pb(II), Co(II), Cu(II), Mn(II), and Zn(II)) removal from water using synthesized C-4-methoxyphenylcalix[4]resorcinarene adsorbent. Desalin Water Treat, 57(10), 4512–4522. doi:10.1080/19443994.2014.991762.

    CAS  Google Scholar 

  • Altinisik, A., & Yurdakoc, K. (2015). Chitosan-/PVA-coated magnetic nanoparticles for Cu(II) ions adsorption. Desalination and Water Treatment (pp. 994–12). doi:10.1080/19443994.20151091.

    Google Scholar 

  • Anthemidis, A. N., & Ioannou, K.-I. G. (2006). Evaluation of polychlorotrifluoroethylene as sorbent material for on-line solid phase extraction systems: Determination of copper and lead by flame atomic absorption spectrometry in water samples. Anal Chim Acta, 575(1), 126–132. doi:10.1016/j.aca.2006.05.072.

    Article  CAS  Google Scholar 

  • Ayala-Cabrera, J. F., Trujillo-Rodríguez, M. J., Pino, V., Hernández-Torres, Ó. M., Afonso, A. M., & Sirieix-Plénet, J. (2016). Ionic liquids versus ionic liquid-based surfactants in dispersive liquid–liquid microextraction for determining copper in water by flame atomic absorption spectrometry. Int J Environ Anal Chem, 96(2), 101–118. doi:10.1080/03067319.2015.1128538.

    Article  CAS  Google Scholar 

  • Azizian, S. (2004). Kinetic models of sorption: A theoretical analysis. J Colloid Interface Sci, 276(1), 47–52. doi:10.1016/j.jcis.2004.03.048.

    Article  CAS  Google Scholar 

  • Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Res, 33(11), 2469–2479. doi:10.1016/s0043-1354(98)00475-8.

    Article  CAS  Google Scholar 

  • Baraka, A., Hall, P. J., & Heslop, M. J. (2007). Melamine–formaldehyde–NTA chelating gel resin: Synthesis, characterization and application for copper(II) ion removal from synthetic wastewater. J Hazard Mater, 140(1–2), 86–94. doi:10.1016/j.jhazmat.2006.06.051.

    Article  CAS  Google Scholar 

  • Bojic, A. L., Bojic, D., & Andjelkovic, T. (2009). Removal of Cu2+ and Zn2+ from model wastewaters by spontaneous reduction–coagulation process in flow conditions. J Hazard Mater, 168(2–3), 813–819. doi:10.1016/j.jhazmat.2009.02.096.

    Article  CAS  Google Scholar 

  • Chen, C., Chiang, C., & Chen, C. R. (2007). Removal of heavy metal ions by a chelating resin containing glycine as chelating groups. Sep Purif Technol, 54(3), 396–403. doi:10.1016/j.seppur.2006.10.020.

    Article  CAS  Google Scholar 

  • Cheung, W. H., Ng, J. C. Y., & Mckay, G. (2003). Kinetic analysis of the sorption of copper(II) ions on chitosan. J Chem Technol Biotechnol, 78, 562–571. doi:10.1002/jctb.836.

    Article  CAS  Google Scholar 

  • Dai, R., Yao, C., Liu, X., Liu, Y., Yan, Y., & Wang, Y. (2016). The effects of continuous cu(II) exposure compared with a shock dosage of cu(II) on pollutant removal in activated sludge. Desalin Water Treat, 57(13), 5842–5850. doi:10.1080/19443994.2015.1005152.

    Article  CAS  Google Scholar 

  • Duan, L., Hu, N., Wang, T., Wang, H., Ling, L., Sun, Y., & Xie, X. (2016). Removal of copper and lead from aqueous solution by Adsorption onto cross-linked Chitosan/Montmorillonite Nanocomposites in the presence of Hydroxyl–Aluminum Oligomeric Cations: Equilibrium, kinetic, and thermodynamic studies. Chem Eng Commun, 203(1), 28–36. doi:10.1080/00986445.2014.956735.

    Article  CAS  Google Scholar 

  • Elwakeel, K. Z., & Rekaby, M. (2011). Efficient removal of Reactive black 5 from aqueous media using glycidyl methacrylate resin modified with tetraethelenepentamine. J Hazard Mater, 188(1–3), 10–18. doi:10.1016/j.jhazmat.2011.01.003.

    Article  CAS  Google Scholar 

  • Ge, F., Ye, H., Luo, J.-Z., Wang, S., Sun, Y.-J., Zhao, B.-X., & Miao, J.-Y. (2013). A new fluorescent and colorimetric chemosensor for cu(II) based on rhodamine hydrazone and ferrocene unit. Sensors Actuators B Chem, 181, 215–220. doi:10.1016/j.snb.2013.01.048.

    Article  CAS  Google Scholar 

  • Ge, Y., Cui, X., Kong, Y., Li, Z., He, Y., & Zhou, Q. (2015). Porous geopolymeric spheres for removal of Cu(II) from aqueous solution: Synthesis and evaluation. J Hazard Mater, 283, 244–251. doi:10.1016/j.jhazmat.2014.09.038.

    Article  CAS  Google Scholar 

  • Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore- and solid-diffusion Kinetics in fixed-bed Adsorption under constant-pattern conditions. Industrial & Engineering Chemistry Fundamentals, 5(2), 212–223. doi:10.1021/i160018a011.

    Article  CAS  Google Scholar 

  • He, Z. Y., Nie, H. L., Branford-White, C., Zhu, L. M., Zhou, Y. T., & Zheng, Y. (2008). Removal of Cu2+ from aqueous solution by adsorption onto a novel activated nylon-based membrane. Bioresour Technol, 99, 7954–7958. doi:10.1016/j.biortech.2008.04.001. Epub 2008 Jun 2.

    Article  CAS  Google Scholar 

  • Hu, K., Wang, K., Liu, J., & Dong, Q. (2016). Hybrid membrane adsorbents: preparation and their adsorptions for copper(II) ions. Desalin Water Treat, 57(10), 4606–4615. doi:10.1080/19443994.2014.1001442.

    CAS  Google Scholar 

  • Kamari, A., Yusoff, S. N. M., Abdullah, F., & Putra, W. P. (2014). Biosorptive removal of Cu(II), Ni(II) and Pb(II) ions from aqueous solutions using coconut dregs residue: Adsorption and characterisation studies. J Environ Chem Eng, 2(4), 1912. doi:10.1016/j.jece.2014.08.014.

  • Lalhmunsiama Tiwari, D., & Lee, S. M. (2016). Surface-functionalized activated sericite for the simultaneous removal of cadmium and phenol from aqueous solutions: Mechanistic insights. Chem Eng J, 283, 1414–1423. doi:10.1016/j.cej.2015.08.072.

  • Liu, C., Bai, R., Hong, L., & Liu, T. (2010). Functionalization of adsorbent with different aliphatic polyamines for heavy metal ion removal: Characteristics and performance. J Colloid Interface Sci, 345(2), 454–460. doi:10.1016/j.jcis.2010.01.057.

    Article  CAS  Google Scholar 

  • Liu, Q., Fei, Q., Fei, Y., Fan, Q., Shan, H., Feng, G., & Huan, Y. (2015). A novel colorimetric probe derived from isonicotic acid hydrazide for copper (II) determination based on internal charge transfer (ICT). Spectrochim Acta A Mol Biomol Spectrosc, 151, 785–789. doi:10.1016/j.saa.2015.07.043.

    Article  CAS  Google Scholar 

  • Martín-Lara, M. A., Blázquez, G., Calero, M., Almendros, A. I., & Ronda, A. (2016). Binary biosorption of copper and lead onto pine cone shell in batch reactors and in fixed bed columns. Int J Miner Process, 148, 72–82. doi:10.1016/j.minpro.2016.01.017.

    Article  Google Scholar 

  • Myasoedova, G. V., Antokol’skaya, I. I., & Savvin, S. B. (1985). New chelating sorbents for noble metals. Talanta, 32(12), 1105–1112. doi:10.1016/0039-9140(85)80233-2.

    Article  CAS  Google Scholar 

  • Neagu, V., & Mikhalovsky, S. (2010). Removal of hexavalent chromium by new quaternized crosslinked poly(4-vinylpyridines). J Hazard Mater, 183(1–3), 533–540. doi:10.1016/j.jhazmat.2010.07.057J.

    Article  CAS  Google Scholar 

  • Ntimbani, R. N., Simate, G. S., & Ndlovu, S. (2015). Removal of copper ions from dilute synthetic solution using staple ion exchange fibres: Equilibrium and kinetic studies. Journal of Environmental Chemical Engineering, 3(2), 1258–1266. doi:10.1016/j.jece.2015.02.010.

    Article  CAS  Google Scholar 

  • Özlem Kocabaş-Ataklı, Z., & Yürüm, Y. (2013). Synthesis and characterization of anatase nanoadsorbent and application in removal of lead, copper and arsenic from water. Chem Eng J, 225, 625–635. doi:10.1016/j.cej.2013.03.106.

    Article  Google Scholar 

  • Pawar, R. R., Lalhmunsiama Bajaj, H., & Lee, S.-M. (2016). Activated bentonite as a low-cost adsorbent for the removal of Cu(II) and Pb(II) from aqueous solutions: Batch and column studies. J Ind Eng Chem, 34, 213–223. doi:10.1016/j.jiec.2015.11.014.

    Article  CAS  Google Scholar 

  • Rao, G. P., Lu, C., & Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Sep Purif Technol, 58, 224–231. doi:10.1016/j.seppur.2006.12.006.

    Article  CAS  Google Scholar 

  • Rutkowska, J., Kilian, K., & Pyrzynska, K. (2008). Removal and enrichment of copper ions from aqueous solution by 1, 8-diaminonapthalene polymer. Eur Polym J, 44(7), 2108–2114. doi:10.1016/j.eurpolymj.2008.04.009.

    Article  CAS  Google Scholar 

  • Saeed, K., Haider, S., Oh, T.-J., & Park, S.-Y. (2008). Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J Membr Sci, 322(2), 400–405. doi:10.1016/j.memsci.2008.05.062.

    Article  CAS  Google Scholar 

  • Sandić, Z. P., Nastasović, A. B., Jović-Jovičić, N. P., Milutinović-Nikolić, A. D., & Jovanović, D. M. (2011). Sorption of textile dye from aqueous solution by macroporous amino-functionalized copolymer. J Appl Polym Sci, 121(1), 234–242. doi:10.1002/app.33537.

    Article  Google Scholar 

  • Şenkal, B. F., & Biçak, N. (2001). Glycidyl methacrylate based polymer resins with diethylene triamine tetra acetic acid functions for efficient removal of ca(II) and mg(II). React Funct Polym, 49(2), 151–157. doi:10.1016/s1381-5148(01)00075-x.

    Article  Google Scholar 

  • Sharma, N., & Tiwari, A. (2016). Effective removal of Cu2+ ions from aqueous solution in fixed-bed micro column using nanomagnetite-loaded poly (acrylamide-co-maleic acid) hydrogel as adsorbent. Desalin Water Treat, 57(10), 4523–4536. doi:10.1080/19443994.2014.991945.

    CAS  Google Scholar 

  • Shen, Y. F., Tang, J., Nie, Z. H., Wang, Y. D., Ren, Y., & Zuo, L. (2009). Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol, 68(3), 312–319. doi:10.1016/j.seppur.2009.05.020.

    Article  CAS  Google Scholar 

  • Tamez, C., Hernandez, R., & Parsons, J. G. (2016). Removal of cu (II) and Pb (II) from aqueous solution using engineered iron oxide nanoparticles. Microchem J, 125, 97–104. doi:10.1016/j.microc.2015.10.028.

    Article  CAS  Google Scholar 

  • Taskin, O. S., Kiskan, B., Aksu, A., Balkis, N., & Yagci, Y. (2016). Copper(II) removal from the aqueous solution using microporous benzidine-based adsorbent material. Journal of Environmental Chemical Engineering, 4(1), 899–907. doi:10.1016/j.jece.2015.12.041.

    Article  CAS  Google Scholar 

  • Uğuzdoğan, E., Denkbaş, E. B., & Kabasakal, O. S. (2010). The use of polyethyleneglycolmethacrylate-co-vinylimidazole (PEGMA-co-VI) microspheres for the removal of nickel(II) and chromium(VI) ions. J Hazard Mater, 177(1–3), 119–125. doi:10.1016/j.jhazmat.2009.12.004.

    Google Scholar 

  • van der Perk, M. (2013). Soil and Water Contamination (2nd ed., p. 4). Balkema: CRC Press.

    Google Scholar 

  • Vuković, G. D., Marinković, A. D., Čolić, M., Ristić, M. Đ., Aleksić, R., Perić-Grujić, A. A., & Uskoković, P. S. (2010). Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem Eng J, 157(1), 238–248. doi:10.1016/j.cej.2009.11.026.

    Article  Google Scholar 

  • Xu, Z., Gao, G., Pan, B., Zhang, W., & Lv, L. (2015). A new combined process for efficient removal of cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation. Water Res, 87, 378–384. doi:10.1016/j.watres.2015.09.025.

    Article  CAS  Google Scholar 

  • Yayayürük, O., Henden, E., & Bıçak, N. (2011). Determination of mercury(II) in the presence of Methylmercury after Preconcentration using Poly(acrylamide) grafted onto cross-linked Poly(4-vinyl pyridine): Application to mercury Speciation. Anal Sci, 27(8), 833. doi:10.2116/analsci.27.833.

    Article  Google Scholar 

  • Zhang, Y. X., Huang, M., Li, F., & Wen, Z. Q. (2013). Controlled synthesis of hierarchical CuO nanostructures for electrochemical capacitor electrodes. Int J Electrochem Sci, 8, 8645–8661.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like thank Niyazi Bıçak and Bünyamin Karagöz for their cooperation and helps in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aslı Erdem Yayayürük.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yayayürük, O., Erdem Yayayürük, A. Removal of Cu(II) from Water Samples Using Glycidyl Methacrylate-Based Polymer Functionalized with Diethylenetriamine Tetraacetic Acid: Investigation of Adsorption Characteristics. Water Air Soil Pollut 227, 244 (2016). https://doi.org/10.1007/s11270-016-2943-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2943-7

Keywords

Navigation