Skip to main content
Log in

Effects of Temperature, Polymer Dose, and Solid Concentration on the Rheological Characteristics and Dewaterability of Digested Sludge of Wastewater Treatment Plant (WWTP)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The rheology of digested sludge affects the flow hydrodynamics, dewaterability, and the polymer consumption in wastewater treatment plants. The rheological characteristics of digested sludge are highly dependent on changes in total solid concentration, temperature, and polymer dose. Hence, this study aims at investigating the impacts of total solid concentration, temperature, and polymer dose on the rheological characteristics and the dewaterability of digested sludge. Investigating the relationship between rheological and physicochemical characteristics of sludge can also serve as a tool to optimize essential process parameters. Different homogenized digested sludge samples were subjected to rheological measurement on rotational stress-controlled rheometer equipped with Peltier concentric cylinder system. The shear stress–shear rate and viscosity–shear rate curves were then developed before and after polymer conditioning at various temperatures and solid concentrations. Different rheological model were fitted to the shear stress–shear rate and viscosity–shear rate rheograms, and the model with the best fitting and more practical significance was selected to determine key rheological parameters. The relationship between dewaterability and digested sludge rheology was also developed. The rheological characteristics of digested sludge during polymer conditioning and flocculation process was significantly affected by temperature and solid concentration; hence, polymer dose can be reduced by operating the dewatering process at optimum temperature condition and varying the polydose as a function of the total solid concentration and viscosity of the digested sludge. The dewaterability as measured in capillary suction time (CST) improved with increasing polymer dose up to 12 kg/t DS but further increase in polymer dose resulted in the deterioration of the dewaterability due to overdosing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abu-Jdayil, B., Banat, F., & Al-Sameraiy, M. (2010). Steady rheological properties of rotating biological contactor (RBC) sludge. Journal of Water Resource and Protection, 2(1), 1–7. doi:10.4236/jwarp.2010.21001.

    Article  CAS  Google Scholar 

  • Abu-Orf, M., & Dentel, S. (1999). Rheology as tool for polymer dose assessment and control. Journal of Environmental Engineering, 125(12), 1133–1141. doi:10.1061/(ASCE)0733-9372(1999)125:12(1133).

    Article  CAS  Google Scholar 

  • Abu-Orf, M., & Örmeci, B. (2005). Measuring sludge network strength using rheology and relation to dewaterability, filtration, and thickening—laboratory and full-scale experiments. Journal of Environmental Engineering, 131(8), 1139–1146. doi:10.1061/(ASCE)0733-9372(2005)131:8(1139).

    Article  CAS  Google Scholar 

  • American Public Health, A., American Water Works, A., Water Pollution Control, F., & Water Environment, F. (2005). Standard Methods for the Examination of Water and Wastewater: American Public Health Association.

  • Bandrés, I., Giner, I., Aldea, M. E., Cea, P., & Lafuente, C. (2009). Experimental and predicted viscosities of binary mixtures of cyclic ethers with 1-chloropentane or 1-chlorohexane at 283.15, 298.15, and 313.15 K. Thermochimica Acta, 484(1–2), 22–26. doi:10.1016/j.tca.2008.11.009.

    Article  Google Scholar 

  • Baroutian, S., Eshtiaghi, N., & Gapes, D. J. (2013). Rheology of a primary and secondary sewage sludge mixture: dependency on temperature and solid concentration. Bioresource Technology, 140, 227–233. doi:10.1016/j.biortech.2013.04.114.

    Article  CAS  Google Scholar 

  • Baudez, J.-C. (2008). Physical aging and thixotropy in sludge rheology. Applied Rheology, 18, 1123–1139.

    Google Scholar 

  • Baudez, J.-C., & Coussot, P. (2001). Rheology of aging, concentrated, polymeric suspensions: application to pasty sewage sludges. Journal of Rheology, 45(5), 1123–1140. doi:10.1122/1.1392298.

    Article  CAS  Google Scholar 

  • Baudez, J. C., Markis, F., Eshtiaghi, N., & Slatter, P. (2011). The rheological behaviour of anaerobic digested sludge. Water Research, 45(17), 5675–5680. doi:10.1016/j.watres.2011.08.035.

    Article  CAS  Google Scholar 

  • Björn, A., Karlsson, A., Svensson, B. H., Ejlertsson, J., & de La Monja, P. S. (2012). Rheological characterization (biogas). Rijeka: InTech.

    Google Scholar 

  • Campbell, H. W., & Crescuolo, P. J. (1983). Assessment of sludge conditionability using rheological properties. In E.E.C. Workshop Methods of Characterization of Sewage Sludge, Dublin, Ireland.

  • Eshtiaghi, N., Markis, F., Yap, S. D., Baudez, J.-C., & Slatter, P. (2013). Rheological characterisation of municipal sludge: a review. Water Research, 47(15), 5493–5510. doi:10.1016/j.watres.2013.07.001.

    Article  CAS  Google Scholar 

  • Farno, E., Parthasarathy, R., Baudez, J. C., & Eshtiaghi, N. (2013). Effect of thermal history on municipal digested sludge rheology: experimental and modeling. Paper presented at the Chemeca 2013.

  • Forster, C. (1981). Preliminary studies on the relationship between sewage sludge viscosities and the nature of the surfaces of the component particles. Biotechnology Letters, 3(12), 707–712.

    Article  Google Scholar 

  • Hasar, H., Kinaci, C., Ünlü, A., Toǧrul, H., & Ipek, U. (2004). Rheological properties of activated sludge in a sMBR. Biochemical Engineering Journal, 20(1), 1–6. doi:10.1016/j.bej.2004.02.011.

    Article  Google Scholar 

  • Hong, E., Yeneneh, A. M., Sen, T. K., Ang, H. M., Kayaalp, A., & Kayaalp, M. (2015). Rheological characteristics of mixture of raw primary and thickened excess activated sludge: impact of mixing ratio, solid concentration, temperature and sludge age. Desalination and Water Treatment, 1–12, doi:10.1080/19443994.2015.1115374.

  • Hong, E., Yeneneh, A. M., Kayaalp, A., Sen, T. K., Ang, H. M., & Kayaalp, M. (2016). Rheological characteristics of municipal thickened excess activated sludge (TEAS): impacts of pH, temperature, solid concentration and polymer dose. Research on Chemical Intermediates, 1–19, doi:10.1007/s11164-016-2482-2.

  • Khalili Garakani, A. H., Mostoufi, N., Sadeghi, F., Hosseinzadeh, M., Fatourechi, H., Sarrafzadeh, M. H., et al. (2011). Comparison between different models for rheological characterization of activated sludge. Iranian Journal of Environmental Health Science and Engineering, 8(3), 255–264.

    Google Scholar 

  • Lay, J.-J., Lee, Y.-J., & Noike, T. (1999). Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research, 33(11), 2579–2586. doi:10.1016/S0043-1354(98)00483-7.

    Article  CAS  Google Scholar 

  • Li, H., Jin, Y., Mahar, R., Wang, Z., & Nie, Y. (2008). Effects and model of alkaline waste activated sludge treatment. Bioresource Technology, 99(11), 5140–5144. doi:10.1016/j.biortech.2007.09.019.

    Article  CAS  Google Scholar 

  • Lotito, V., & Lotito, A. M. (2014). Rheological measurements on different types of sewage sludge for pumping design. Journal of Environmental Management, 137, 189–196. doi:10.1016/j.jenvman.2014.02.005.

    Article  Google Scholar 

  • Lotito, V., Spinosa, L., Mininni, G., & Antonacci, R. (1997). The rheology of sewage sludge at different steps of treatment. Water Science and Technology, 36(11), 79–85. doi:10.1016/S0273-1223(97)00672-0.

    Article  Google Scholar 

  • Markis, F., Baudez, J.-C., Parthasarathy, R., Slatter, P., & Eshtiaghi, N. (2014). Rheological characterisation of primary and secondary sludge: impact of solids concentration. Chemical Engineering Journal, 253, 526–537. doi:10.1016/j.cej.2014.05.085.

    Article  CAS  Google Scholar 

  • Mori, M., Seyssiecq, I., & Roche, N. (2006). Rheological measurements of sewage sludge for various solids concentrations and geometry. Process Biochemistry, 41(7), 1656–1662. doi:10.1016/j.procbio.2006.03.021.

    Article  CAS  Google Scholar 

  • Neyens, E., Baeyens, J., Dewil, R., & De heyder, B. (2004). Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. Journal of Hazardous Materials, 106(2–3), 83–92. doi:10.1016/j.jhazmat.2003.11.014.

    Article  CAS  Google Scholar 

  • Örmeci, B. (2007). Optimization of a full-scale dewatering operation based on the rheological characteristics of wastewater sludge. Water Research, 41(6), 1243–1252. doi:10.1016/j.watres.2006.12.043.

    Article  Google Scholar 

  • Piani, L., Rizzardini, C. B., Papo, A., & Goi, D. (2014). Rheology measurements for online monitoring of solids in activated sludge reactors of municipal wastewater treatment plant. The Scientific World Journal, 2014, 6. doi:10.1155/2014/590961.

    Article  Google Scholar 

  • Raszka, A., Chorvatova, M., & Wanner, J. (2006). The role and significance of extracellular polymers in activated sludge. Part I: literature review. Acta Hydrochimica et Hydrobiologica, 34(5), 411–424. doi:10.1002/aheh.200500640.

    Article  CAS  Google Scholar 

  • Ratkovich, N., Horn, W., Helmus, F. P., Rosenberger, S., Naessens, W., Nopens, I., et al. (2013). Activated sludge rheology: a critical review on data collection and modelling. Water Research, 47(2), 463–482. doi:10.1016/j.watres.2012.11.021.

    Article  CAS  Google Scholar 

  • Sanin, F. D. (2002). Effect of solution physical chemistry on the rheological properties of activated sludge. Water SA, 28(2), 207–212.

    Article  CAS  Google Scholar 

  • Show, K.-Y., Mao, T., & Lee, D.-J. (2007). Optimisation of sludge disruption by sonication. Water Research, 41(20), 4741–4747. doi:10.1016/j.watres.2007.07.017.

    Article  CAS  Google Scholar 

  • Sokolov, L. I. (2013). Rheology of sludges and residues of effluent waters. Life Science Journal, 10(4).

  • Wang, Y., & Dentel, S. (2010). The effect of high speed mixing and polymer dosing rates on the geometric and rheological characteristics of conditioned anaerobic digested sludge (ADS). Water Research, 44(20), 6041–6052.

    Article  CAS  Google Scholar 

  • Yang, F., Bick, A., Shandalov, S., Brenner, A., & Oron, G. (2009). Yield stress and rheological characteristics of activated sludge in an airlift membrane bioreactor. Journal of Membrane Science, 334(1–2), 83–90. doi:10.1016/j.memsci.2009.02.022.

    Article  CAS  Google Scholar 

  • Yen, P.-S., Chen, L. C., Chien, C. Y., Wu, R.-M., & Lee, D. J. (2002). Network strength and dewaterability of flocculated activated sludge. Water Research, 36(3), 539–550. doi:10.1016/S0043-1354(01)00260-3.

    Article  CAS  Google Scholar 

  • Yeneneh, A. M. (2014). Study on performance enhancement of anaerobic digestion of municipal sewage sludge. PhD Thesis, Curtin University, Perth, Australia.

  • Yin, X., Han, P., Lu, X., & Wang, Y. (2004). A review on the dewaterability of bio-sludge and ultrasound pretreatment. Ultrasonics Sonochemistry, 11(6), 337–348. doi:10.1016/j.ultsonch.2004.02.005.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Water Corporation, Perth, WA, and the Department of Chemical Engineering of Curtin University, Perth, for providing financial support, necessary research infrastructure, and equipment/instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Kanti Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeneneh, A.M., Hong, E., Sen, T.K. et al. Effects of Temperature, Polymer Dose, and Solid Concentration on the Rheological Characteristics and Dewaterability of Digested Sludge of Wastewater Treatment Plant (WWTP). Water Air Soil Pollut 227, 119 (2016). https://doi.org/10.1007/s11270-016-2820-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2820-4

Keywords

Navigation