Skip to main content

Advertisement

Log in

Biological Nitrogen Removal in Moving Bed Biofilm Reactor Using Ibuprofen as Carbon Source

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study investigates removal of total nitrogen (TN) in moving bed biofilm reactor (MBBR) supported with high-density polyethylene for biofilm formation and ibuprofen (IBU) as a carbon source. At first, the microorganisms have been acclimated for 45 days. In the optimum condition, TN removal of more than 80 % was reached. Optimization results of simultaneous removal of IBU and TN showed that the obtained removal efficiencies for IBU and TN are close together and the correlation coefficients have high values. The obtained results show that MBBR bioreactor could remove 72.03 % IBU and 81.1 % TN at 145.15 h and TN concentration of 156.37 mg/L. Biodegradation constant (k biol) values were varying from 0.4 to 0.009 L/g biomass.d, which represents that IBU is a hard biodegradable or persistent substance. This study demonstrated that the proposed MBBR is highly effective for the simultaneous removal of IBU and TN in wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambuludi, S., Panizza, M., Oturan, N., Özcan, A., & Oturan, M. (2013). Kinetic behavior of anti-inflammatory drug ibuprofen in aqueous medium during its degradation by electrochemical advanced oxidation. Environmental Science and Pollution Research, 20, 2381–2389. doi:10.1007/s11356-012-1123-6.

    Article  CAS  Google Scholar 

  • Atkinson AJ (2012) Principles of clinical pharmacology: Academic Press

  • Behera, S. K., Kim, H. W., Oh, J. E., & Park, H. S. (2011). Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Science of the Total Environment, 409, 4351–4360.

    Article  CAS  Google Scholar 

  • Bendz, D., Paxeus, N. A., Ginn, T. R., & Loge, F. J. (2005). Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. Journal of Hazardous Materials, 122, 195–204.

    Article  CAS  Google Scholar 

  • Bernhard, M., Müller, J., & Knepper, T. P. (2006). Biodegradation of persistent polar pollutants in wastewater: Comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment. Water Research, 40, 3419–3428. http://dx.doi.org/10.1016/j.watres.2006.07.011.

    Article  CAS  Google Scholar 

  • Camacho-Muñoz, D., Martín, J., Santos, J., Aparicio, I., & Alonso, E. (2012). Effectiveness of conventional and low-cost wastewater treatments in the removal of pharmaceutically active compounds. Water, Air, & Soil Pollution, 223, 2611–2621. doi:10.1007/s11270-011-1053-9.

    Article  Google Scholar 

  • Carballa, M., Fink, G., Omil, F., Lema, J. M., & Ternes, T. (2008). Determination of the solid–water distribution coefficient (K d) for pharmaceuticals, estrogens and musk fragrances in digested sludge. Water Research, 42, 287–295.

    Article  CAS  Google Scholar 

  • Chu, L., & Wang, J. (2011). Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in moving bed biofilm reactor. Chemical Engineering Journal, 170, 220–225.

    Article  CAS  Google Scholar 

  • Dâas, A., & Hamdaoui, O. (2014). Removal of non-steroidal anti-inflammatory drugs ibuprofen and ketoprofen from water by emulsion liquid membrane. Environmental Science and Pollution Research, 21, 2154–2164. doi:10.1007/s11356-013-2140-9.

    Article  Google Scholar 

  • Falås, P., Baillon-Dhumez, A., Andersen, H. R., Ledin, A., & la Cour, J. J. (2012). Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals. Water Research, 46, 1167–1175.

    Article  Google Scholar 

  • Falås, P., Longrée, P., la Cour, J. J., Siegrist, H., Hollender, J., & Joss, A. (2013). Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process. Water Research, 47, 4498–4506.

    Article  Google Scholar 

  • Garcia-Rodríguez, A., Matamoros, V., Fontàs, C., & Salvadó, V. (2014). The ability of biologically based wastewater treatment systems to remove emerging organic contaminants—a review. Environmental Science and Pollution Research, 21, 11708–11728. doi:10.1007/s11356-013-2448-5.

    Article  Google Scholar 

  • Hoseinzadeh, E., Khorsandi, H., Wei, C., & Alipour, M. (2015). Evaluation of Aydughmush River water quality using the National Sanitation Foundation Water Quality Index (NSFWQI), River Pollution Index (RPI), and Forestry Water Quality Index (FWQI). Desalination and Water Treatment, 54, 2994–3002.

    Article  CAS  Google Scholar 

  • Hossini, H., Rezaee, A., Ayati, B., & Mahvi, A. H. (2015). Simultaneous nitrification and denitrification using a polypyrrole/microbial cellulose electrode in a membraneless bio-electrochemical system. RSC Advances, 5, 72699–72708.

    Article  CAS  Google Scholar 

  • Ifelebuegu, A., & Ezenwa, C. (2011). Removal of endocrine disrupting chemicals in wastewater treatment by Fenton-like oxidation. Water, Air, & Soil Pollution, 217, 213–220. doi:10.1007/s11270-010-0580-0.

    Article  CAS  Google Scholar 

  • Jeffries K, Brander S, Britton M, Fangue N, Connon R (2015) Chronic exposures to low and high concentrations of ibuprofen elicit different gene response patterns in a euryhaline fish. Environmental Science and Pollution Research: 1–17, doi:10.1007/s11356-015-4227-y

  • Keener, W. K., & Arp, D. J. (1994). Transformations of aromatic compounds by Nitrosomonas europaea. Applied and Environmental Microbiology, 60, 1914–1920.

    CAS  Google Scholar 

  • Kruglova, A., Ahlgren, P., Korhonen, N., Rantanen, P., Mikola, A., & Vahala, R. (2014). Biodegradation of ibuprofen, diclofenac and carbamazepine in nitrifying activated sludge under 12°C temperature conditions. Science of the Total Environment, 499, 394–401. http://dx.doi.org/10.1016/j.scitotenv.2014.08.069.

    Article  CAS  Google Scholar 

  • Langenhoff, A., Inderfurth, N., Veuskens, T., Schraa, G., Blokland, M., Kujawa-Roeleveld, K., et al. (2013). Microbial removal of the pharmaceutical compounds ibuprofen and diclofenac in wastewater. BioMed Research International, 2013, 9. doi:10.1155/2013/325806.

    Article  Google Scholar 

  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Kang, J., et al. (2014). Removal and fate of micropollutants in a sponge-based moving bed bioreactor. Bioresource Technology, 159, 311–319.

    Article  CAS  Google Scholar 

  • Marco-Urrea, E., Pérez-Trujillo, M., Vicent, T., & Caminal, G. (2009). Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere, 74, 765–772. http://dx.doi.org/10.1016/j.chemosphere.2008.10.040.

    Article  CAS  Google Scholar 

  • Matamoros, V., Duhec, A., Albaigés, J., & Bayona, J. (2009). Photodegradation of carbamazepine, ibuprofen, ketoprofen and 17α-ethinylestradiol in fresh and seawater. Water, Air, and Soil Pollution, 196, 161–168. doi:10.1007/s11270-008-9765-1.

    Article  CAS  Google Scholar 

  • Murdoch, R. W., & Hay, A. G. (2005). Formation of catechols via removal of acid side chains from ibuprofen and related aromatic acids. Applied and Environmental Microbiology, 71, 6121–6125.

    Article  CAS  Google Scholar 

  • Murdoch, R. W., & Hay, A. G. (2013). Genetic and chemical characterization of ibuprofen degradation by Sphingomonas Ibu-2. Microbiology, 159, 621–632.

    Article  CAS  Google Scholar 

  • Paíga, P., Santos, L. M. L. M., Amorim, C., Araújo, A., Montenegro, M. C. S. M., Pena, A., et al. (2013). Pilot monitoring study of ibuprofen in surface waters of north of Portugal. Environmental Science and Pollution Research, 20, 2410–2420. doi:10.1007/s11356-012-1128-1.

    Article  Google Scholar 

  • Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93, 1268–1287.

    Article  CAS  Google Scholar 

  • Sarasidis, V. C., Plakas, K. V., Patsios, S. I., & Karabelas, A. J. (2014). Investigation of diclofenac degradation in a continuous photo-catalytic membrane reactor. Influence of operating parameters. Chemical Engineering Journal, 239, 299–311. http://dx.doi.org/10.1016/j.cej.2013.11.026.

    Article  CAS  Google Scholar 

  • Singh, K., Singh, A., Singh, U., & Verma, P. (2012). Optimizing removal of ibuprofen from water by magnetic nanocomposite using Box–Behnken design. Environmental Science and Pollution Research, 19, 724–738. doi:10.1007/s11356-011-0611-4.

    Article  CAS  Google Scholar 

  • Suarez, S., Lema, J. M., & Omil, F. (2010). Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Research, 44, 3214–3224.

    Article  CAS  Google Scholar 

  • Sun, Q., Lv, M., Hu, A., Yang, X., & Yu, C. P. (2014). Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China. Journal of Hazardous Materials, 277, 69–75. http://dx.doi.org/10.1016/j.jhazmat.2013.11.056.

    Article  CAS  Google Scholar 

  • Tambosi, J. L., de Sena, R. F., Favier, M., Gebhardt, W., José, H. J., Schröder, H. F., et al. (2010). Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination, 261, 148–156. http://dx.doi.org/10.1016/j.desal.2010.05.014.

    Article  CAS  Google Scholar 

  • Tijani, J., Fatoba, O., & Petrik, L. F. (2013). A review of pharmaceuticals and endocrine-disrupting compounds: sources, effects, removal, and detections. Water, Air, & Soil Pollution, 224, 1–29. doi:10.1007/s11270-013-1770-3.

    Article  CAS  Google Scholar 

  • Urtiaga, A. M., Pérez, G., Ibáñez, R., & Ortiz, I. (2013). Removal of pharmaceuticals from a WWTP secondary effluent by ultrafiltration/reverse osmosis followed by electrochemical oxidation of the RO concentrate. Desalination, 331, 26–34. http://dx.doi.org/10.1016/j.desal.2013.10.010.

    Article  CAS  Google Scholar 

  • Wu, W., Yang, F., & Yang, L. (2012). Biological denitrification with a novel biodegradable polymer as carbon source and biofilm carrier. Bioresource Technology, 118, 136–140.

    Article  CAS  Google Scholar 

  • Yang J, Trela J, Płaza E. Influence of aeration strategy on behavior of different microorganisms in deammonification process. In Proc. of Polish-Swedish-Ukrainian Seminar “Future urban sanitation to meet new requirements for water quality in the Baltic Sea Region, 2011: 17–19.

Download references

Acknowledgments

This work is linked to PhD thesis of Mr. Edris Hoseinzadeh that was supported by Tarbiat Modares University (TMU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Rezaee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseinzadeh, E., Rezaee, A. & Hossini, H. Biological Nitrogen Removal in Moving Bed Biofilm Reactor Using Ibuprofen as Carbon Source. Water Air Soil Pollut 227, 46 (2016). https://doi.org/10.1007/s11270-015-2690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2690-1

Keywords

Navigation