Skip to main content
Log in

Biosurfactant Production by Strains of Azospirillum Isolated from Petroleum-Contaminated Sites

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Some microorganisms can produce biotensoactive when in contact with hydrocarbons, which favours micelle formation, allowing microbial cells to metabolise them effectively. In this study, we evaluated the capacity of nitrogen-fixing (NFB) and hydrocarbonoclastic bacterial strains to generate biotensoactive. The sampling site was in a flood plain of the Chico Zapote River, on the low basin of the Tonalá River in Tabasco, Mexico. Rhizospheres and soil contaminated by oil were collected, and the concentration of oil and botanic samples were determined for their taxonomic classification. The collected rhizosphere oil was seeded into Congo red cultures to obtain Azospirillum (NFB) bacteria. The NFB strain was placed in liquid mineral medium with oil as the only carbon source to identify the hydrocarbonoclastic strains. Biochemical and physiological evaluations determined that the species were Azospirillum brasilense and Azospirillum lipoferum. The strains were placed into Kim medium for generating a biosurfactant. The biosurfactant produced by A. brasilense showed an emulsion stability of 229 min, yield of 0.1375 g L−1, emulsion capacity of 80 % and superficial tension of 38 mN m−1, and while the biotensoactive produced by A. lipoferum had an emulsion stability of 260 min, yield of 0.22 g L−1, emulsion capacity of 90 % and superficial tension of 35.5 mN m−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almazán, V., González, J., Pérez, J., Dieguez, F., Villaverde, M., Pérez, G., Joseph, N., Gan, R. (2000). Purificación e identificación de la naturaleza química de un tensoactivo producido por Pseudomonas aeruginosa Cepa Ido-330. Revista Biología, 14, 172–177.

  • Álvarez, J., Fernández, V., Macías, E., Pignon, Y., Rharbi, R., & Gómez, J. (2009). Phase behavior studies of the Pluronic P103/Water system in the dilute and semidilute regimes. Journal of colloids and interface Science. doi:10.1016/j.jcis.2009.01.068.

    Google Scholar 

  • Aparicio, R. (2012). Determinaciones de las concentraciones micelares críticas (CMC) para el sistema p-Fluorobenzoato del cetiltrimetilamonio (CTAPFB)/Agua. Tesis de licenciatura. Centro universitario de ciencias exactas e ingenierías. Universidad de Guadalajara. Jalisco, México. pp. 38.

  • Banat, I., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M., Fracchia, L., Smyth, T., & Marchant, R. (2010). Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol. doi:10.1007/s00253-010-2589-0.

    Google Scholar 

  • Bueno, J., Álvarez, F., Santiago, S. (2005). Biodiversity of Tabasco State. [http://www.conabio.gob.mx/institución/proyectos/resultados/FichapubCP008.pdf]. Mexico.

  • Cassidy, D., & Hudok, A. (2001). Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor. J Hazard Mater., 84, 253–264.

    Article  CAS  Google Scholar 

  • Cortés, A., Hernández, H., & Jaramillo, M. (2013). Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol. doi:10.1016/j.micres.2012.07.002.

    Google Scholar 

  • Das, K., & Mukherjee, A. (2007). Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants. Process biochem., 42, 1191–1199.

    Article  CAS  Google Scholar 

  • Deshpande, S., Shiau, B., Wade, D., Sabatini, D., & Harwell, J. (1999). Surfactants selection for enhancing ex situ soil washing. Pergamon., 33, 351–60.

    CAS  Google Scholar 

  • Diniz, R., Moura, J., De Campos, G., & Asfora, L. (2014). Characterization and properties of biosurfactant produced by Candida lipolytica UPC 0998. Eletronic Journal of Biotechnology., 17, 34–38. doi:10.1016/j.ejbt.2013.12.006.

    Article  Google Scholar 

  • Domínguez, M., Zavala, J., Martínez, P. (2011). Mangrove forest management in Tabasco [www.colpos.mx/tabasco/vinculacion/LIBRO_MANGLARES_DE_TABASCO.pdf]. Graduate School. Mexico.

  • Ferhat, F., Mnif, S., Badis, A., Eddouaouda, K., Alouaoil, R., Boucherit, A., Mhiri, N., & Moulai-mostefa, N. (2011). Screening and preliminary characterization of biosurfactants produced by Chrobactrum sp. 1C and Brevibacterium sp. 7G isolated from hydrocarbon-contaminated soils. International Biodeterioration and Biodegradation, 65, 1182–1188. doi:10.1016/J.IBIOD.2011.07013.

    Article  CAS  Google Scholar 

  • Fonseca, R., Silva, J., De Franca, P., Cardoso, L., & Sérvulo, F. (2007). Optimizing carbon/nitrogen ratio for biosurfactant production by a Bacillus subtilis strain. Appl. Biochem and Biotech., 137, 471–486.

    Google Scholar 

  • García, E., Zavala, J., & Palma, D. (2006). Characterization of plant communities in an area affected by hydrocarbon spills. Terra Latinoamericana, 24, 17–26 [http://redalyc.org/pdf/573/57311494003.pdf].

    Google Scholar 

  • García, E., Zavala, J., & López, A. (2012). Plants and vegetation in the lower basin of Tonalá River. In J. Zavala & E. García (Eds.), Soil and vegetation in the lower basin of Tonalá River (pp. 103–123). Mexico: Tabasco. Graduate School.

    Google Scholar 

  • Guerrero, A., Hernández, L., Zavala, J., & Carrillo, E. (2012). Soil contamination by crude oil in the lower basin of the Tonalá River. In J. Zavala & E. García (Eds.), Soil and vegetation in the lower basin of the Tonala River, Tabasco (pp. 85–101). Mexico: Graduate School [www.biblio.colpos.mx8080/xmlui/handle/10521/1605].

    Google Scholar 

  • Hamilton, R., & Hamilton, S. (1992). Lipid analysis, IRL Press, the practical approach series, U.S.A. pp. 65–93.

  • Hernández, E., Ferrera, R., & Rodríguez, R. (2003). Free-living atmospheric nitrogen-fixing bacteria in bean rhizospheres contaminated with kerosene. Terra latinoamericana, 21, 81–89 [http://www.redalyc.org/pdf/573/57321110.pdf].

    Google Scholar 

  • Hernández, M., Ojeda, M., Martínez, J., & Córdova, Y. (2011). Optimal parameters for the development of the hydrocarbonoclastic microorganism Proteus sp. Soil Sci. Plant Nutr., 11, 29–43.

    Article  Google Scholar 

  • Holt, J., Krieg, R., Sneath, H., Staley, T., Williams, T. (1994). Bergey’s manual of determinative bacteriology. US.

  • Inckot, C., De Oliveira, G., De Souza, A., & Bona, C. (2011). Germination and development of Mimosa pilulifera in petroleum-contaminated soil and bioremediated soil. Flora., 206, 261–266.

    Article  Google Scholar 

  • Janek, T., Lukaszewicz, M., & Krasowska, A. (2013). Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2. Colloids and Surfaces B: Biointerfaces, 110, 379–386. doi:10.1016/j.colsurfb.2013.05.008.

    Article  CAS  Google Scholar 

  • Jiménez, D., Medina, S., & Gracida, J. (2010). Properties, applications and production of biosurfactants. Rev. Int. Contam. Ambient., 1, 65–84 [http://revistas.unam.mx/index.php/rica/article/view/20446].

    Google Scholar 

  • Kim, H., Jong, L., Ok, L., & Dong, L. (2000). Purification and characterization of biosurfactants from Nocardia sp. L. 417. Biotechnol. Appl. Biochem.. doi:10.1042/BA19990111.

    Google Scholar 

  • Kim, I., Park, J., & Kim, K. (2011). Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic Surfactants in soil slurry. Applied Geochemistry., 16, 1419–1428.

    Article  Google Scholar 

  • Kitamoto, D., & Nakahara, T. (2002). Functions and potential applications of glycolipid biosurfactants from energy saving materials to gene delivery carriers. J. Biosc. Bioeng. doi:10.1016/S1389-1723(02)80149-9.

    Google Scholar 

  • Kuiper, I., Legendijk, E., Pickford, R., Derrick, J., Lamers, G., Thomas, J., Lugtembeg, B., & Bloemberg, G. (2004). Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvìns I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol., 51, 97–113.

    Article  CAS  Google Scholar 

  • Kuttuvan, S., Rajee, S., Himani, J., Kunduru, R., Sanjit, K., Rachapudi, N., & Ashok, P. (2013). Studies on biosurfactants from Pseudozyma sp. NII 08165 and their potential application as laundry detergent additives. Biochem. Eng.. doi:10.1016/j.bej.2012.12.014.

    Google Scholar 

  • Laha, S., & Luthy, R. (1992). Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems. Biotechnol. Bioeng., 40, 1367–1380.

    Article  CAS  Google Scholar 

  • Laurencio, H., & Delgado, Y. (2008). Reological properties of emulsions of petroleum weighed in water. Rev Chilena of engineering., 16, 244–249.

    Google Scholar 

  • Lee, D., Kim, E., & Chang, H. (2005). Effect of Tween surfactant components for remediation of toluene-contaminated groundwater. Geosciences Journal., 9, 261–267.

    Article  CAS  Google Scholar 

  • Lot, A. (1991). Vegetation and aquatic vascular plants in the Veracruz State [http://www1.inecol.edu.mx/herbarioxal/tesis.htm]. Doctoral Thesis. National Autonomous University of Mexico. 217 pp.

  • Lot, A., & Chiang, F. (1986). Herbarium manual. Administration and management of collections, sampling and preparation of plant specimens. [http://www.worldcat.org/title/manual-de-herbario-administracion-y-manejo-de-colecciones-tecnicas-de-recoleccion-y-preparacion-de-ejemplares-botanicos/oclc/13983653&referrer=brief-results]. Mexico.

  • Luna, M., Rufino, D., Sarubbo, A., & Campos, G. (2013). Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloid and Surface B. doi:10.1016/j.colsurfb.2012.08.008.

    Google Scholar 

  • Madigan, M., Martinko, M., Stahl, A., & Clark, D. (2012). Brock biology of microorganisms. España: Pearson Higher.

    Google Scholar 

  • Müller, M., Küglera, J., Henkela, M., Gerlitzki, M., Hörmanna, B., Pöhnleina, M., Syldatka, C., & Hausmannb, R. (2012). Rhamnolipids–next generation surfactants? Biotechnol. doi:10.1016/j.jbiotec.2012.05.022.

  • Nathália, M. P., Rocha, S., Rufino, R. D., & Luna, J. M. (2014). Screening of Pseudomonas species for biosurfactants production using low-cost substrates. Biocatalysis and Agricultural Biotechnology. doi:10.1016/j.bcab.2013.09.005.

    Google Scholar 

  • Nehal, A., Amal, N., Nael, Z., & Hussein, G. (1999). Stability and rheology of heavy crude oil-in-water emulsion stabilized by an anionic-nonionic surfactant mixture. Petroleum science and technology., 17, 553–576.

    Article  Google Scholar 

  • Ojeda, M., Hernández, M., Martínez, J., Díaz, L., & Rivera, M. (2012). Three Proteus sp inoculant dose in crude oil biodegradation. Rev. Int. Contam. Ambient., 4, 112–1123.

    Google Scholar 

  • Ojeda, M., Hernández, M., Vázquez, J., Córdova, Y., & Hernández, Y. (2013). Optimal parameters for in vitro development of the fungus hydrocarbonoclastic Penicillium sp. Advances in Chemical Engineering and Science. doi:10.4236/aces.2013.34A1004.

    Google Scholar 

  • PEMEX. (2013). Annual statistical report 2013. Petróleos Mexicanos. [http://www.pemex.com/acerca/informes_publicaciones/Documents/anuario_estadistico_2013/anuario-estadistico2013_131014.pdf]. Accessed 17 July 2014.

  • Pérez, J., Anaya, R., Chang, C., Membrillo, I., & Calva, J. (2010). Biosurfactant production by free-living nitrogen-fixing bacteria grown in hydrocarbons. Revista CENIC, 41, 1–10.

    Google Scholar 

  • Prince, N., Ray, K., Vermillon, K., Dunlap, C., & Kurtzman, C. (2012). Structural characterization of novel sophorolipid biosurfactants from a newly identified species of Candida yeast. Carbohydrate Research., 348, 33–41. doi:10.1016/j.carres.2011.07.016.

    Article  Google Scholar 

  • PROFEPA. (2011). National analysis of environmental emergencies. [http://www.profepa.gob.mx/innovaportal/v/211/1/ms/analiss_nacional_de_emergenciasambientales.html]. Accessed 19 July 2014.

  • Proffitt, C., Devlin, D., & Lindsey, M. (1995). Effects of oil on mangrove seedlings grown under different environmental conditions. Marine pollution bulletin., 30, 788–793.

    Article  CAS  Google Scholar 

  • Rakeshkumar, M., Kalpana, M., Nidhi, J., Avinash, M., & Bhavanath, J. (2013). Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation. Int J Biol Macromol., 62, 52–58. doi:10.1016/j.ijbiomac.2013.08.030.

    Article  Google Scholar 

  • Ramírez, R., Luna, B., Velázquez, O., Vierna, L., Mejía, A., Tsukuzi, G., Hernández, L., Müggenburg, I., Camacho, A., Urzúa, M. (2001). Manual of general microbiology methods. Mexico.

  • Riojas, G., Torres, B., Mondaca, F., Balderas, C., & Moroyoqui, P. (2010). Efectos de los surfactantes en la biorremediación de los suelos contaminados con hidrocarburos. Revista Química Viva, 3, 121–137.

    Google Scholar 

  • Rodrígues, L., Banat, I., Teixeira, J., & Oliveira, R. (2006). Biosurfactants: potential applications in medicine. J. Antimic. Chem. doi:10.1093/jac/dkl024.

    Google Scholar 

  • Ron, E., & Rosenberg, E. (2001). Biosurfactants and oil bioremediation. Current Opinion in Biotechnology. doi:10.1016/S0958-1669(02)00316-6.

    Google Scholar 

  • Ruffino, M., Luna, H., Marinho, B., Farias, R., & Ferreira, A. (2013). Removal of petroleum derivate adsorbed to soil by biosurfactant trufisan produced by Candida lipolytica. J Petrol Sci Eng. doi:10.1016/j.petrol.2013.08.014.

    Google Scholar 

  • Santos, F., Flavila, C., Rosado, S., & Peixoto, S. (2011). Bioremediation of mangroves impacted by petroleum. Water air soil pollution. doi:10.1007/s11270-010-0536-4.

    Google Scholar 

  • SAS Institute Inc. (2009). SAS®. 9.2 SQ procedure user’s guide. Cary: SAS Institute Inc.

    Google Scholar 

  • SEMARNAT. (2002). Norma Oficial Mexicana NOM-021-RECNAT-2000. Section 6.1. Evaluation of conformity in soil sampling. Sampling for determining soil fertility. Secretariat of the Environment and Natural Resources. Official Gazette of the Federation, Second Section, December, 2002.

  • Silva, J., Rocha, M., Rufino, D., Luna, M., Silva, O., & Sarubbo, A. (2014). Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil. Colloid and Surface B. doi:10.1016/j.colsurfb.2014.02.012.

    Google Scholar 

  • Souza, E., Vessoni, P., & Sousa, O. (2014). Biosurfactant-enhanced hydrocarbon bioremediation: an overview. Int Biodeter Biodegr. doi:10.1016/j.ibiod.2014.01.007.

    Google Scholar 

  • Thavasi, R., Jayalakshmi, T., & Balasubramanian, I. (2009). Biosurfactant production by Azotobacter chroococcum isolated from the marine environment. Mar. Biotecnnol. doi:. doi:10.1007/s10126-008-9162-1.

    Google Scholar 

  • Thies, S., Schübel, B., Kovacic, F., Rosenau, F., Hausmann, R., & Jaeger, K. (2014). Heterologous production of the lipopeptide biosurfactant serrawettin W1 in Escherichia coli. J Biotechnol. doi:10.1016/j.jbiotec.2014.03.037.

    Google Scholar 

  • Yahya, A., Sanket, J., Saif, A., Abdulkadir, E., Al, A., & Biji, S. (2014). Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloid and Surface B. doi:10.1016/j.colsurfb.2013.09.022.

    Google Scholar 

  • Zavala, J., Gavi, F., Adams, R., Ferrera, R., Palma, D., Vaquera, H., & Domínguez, J. (2005). Oil spills in soils and adaptation of tropical grasses in the Cinco Presidentes production center, Tabasco, Mexico. Terra latinoamericana, 23, 293–302 [http://www.redalyc.org/pdf/573/57323302.pdf].

    Google Scholar 

Download references

Acknowledgments

This study is part of a doctoral project entitled “Restoration of petroleum contaminated mangrove soils in Tabasco, Mexico” The isolation of free-living nitrogen-fixing bacterial strains with the capacity to produce biosurfactants was performed with the support from Engr. Carlo Mario Hernández Domínguez of the Biotechnology Laboratory of the Autonomous Juarez University of Tabasco. Thanks to M.C.A. Lucero Vázquez Cruz, Head of the Microbiology Laboratory, for the support in the identification of Azospirillum species. We also thank Dr. María De Los Ángeles Guadarrama Olivera, Head of the Laboratory of Vascular Plants of the Herbarium of the Autonomous Juarez University of Tabasco, for the support in the taxonomic identification of vascular plants. We also extend our thanks to Dr. Emma Rebeca Macías Balleza of the Rheology Laboratory of Guadalajara University for the support in the measurements of surface tension and critical micelle concentration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marivel Domínguez-Domínguez.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojeda-Morales, M.E., Domínguez-Domínguez, M., Hernández-Rivera, M.A. et al. Biosurfactant Production by Strains of Azospirillum Isolated from Petroleum-Contaminated Sites. Water Air Soil Pollut 226, 401 (2015). https://doi.org/10.1007/s11270-015-2659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2659-0

Keywords

Navigation