Skip to main content
Log in

Addition of Adsorbents to Nanofiltration Membrane to Obtain Complete Pesticide Removal

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Removal of micropollutants from water with NF/RO membranes has received much attention in recent years. However, because of especially diffusion through the polyamide layer, NF/RO membranes never achieve complete removal, which may be a problem given the possibility of micropollutants causing adverse effects in even very low concentrations. In this paper, we have investigated a strategy of implementing adsorbents into the support layer of a NF membrane to increase the overall removal of three selected pesticides by combining membrane rejection and adsorption into one unit operation. The objective of the study was to act as proof of concept for the scheme, as well as to gain insights into how adsorbents may be inserted into the membrane support, and how they affect the membrane performance. The results showed that the addition of the adsorbents to the membrane increased the adsorption capacity of the membrane, and that the adsorbents could be embedded in the membrane without affecting the flux and rejection behaviour. This however depended very much on the specific manufacturing method. Furthermore, the adsorption capacity was found to vary significantly for the three pesticides, indicating a need for adsorbents designed to specifically target a given micropollutant. Overall, the concept of a complete removal membrane is realisable, but several challenges remain to be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Australian Pesticides and Veterinary Medicines Authority. (2008). Atrazine final review report and regulatory decision. Australian Pesticides and Veterinary Medicines Authority.

  • Bellona, C., Drewes, J. E., Xu, P., & Amy, G. (2004). Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review. Water Research, 38, 2795–2809. doi:10.1016/j.watres.2004.03.034.

    Article  CAS  Google Scholar 

  • Global Environment Outlook 5, United Nations Environment Programme. (2012).

  • Grube, A., Donaldson, D., Kiely, T., & Wu, L. (2011). Pesticides industry sales and usage 2006 and 2007 market estimates. United States Environmental Protection Agency.

  • Hancock, N. T., Xu, P., Heil, D. M., Bellona, C., & Cath, T. Y. (2011). Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis. Environmental Science & Technology, 45(19), 8483–8490. doi:10.1021/es201654k.

    Article  CAS  Google Scholar 

  • Karabelas, A., & Plakas, K. (2011). Membrane treatment of potable water for pesticides removal. In P. M. Larramendy (Ed.), Herbicides, theory and applications (pp. 369–408). InTech. doi:10.5772/13240.

  • Kazner, C., Lehnberg, K., Kovalova, L., Wintgens, T., Melin, T., Hollender, J., & Dott, W. (2008). Removal of endocrine disruptors and cytostatics from effluent by nanofiltration in combination with adsorption on powdered activated carbon. Water Science & Technology, 58(8), 1699–1706. doi:10.2166/wst.2008.542.

    Article  CAS  Google Scholar 

  • Kim, J., & Van der Bruggen, B. (2010). The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment. Environmental Pollution, 158(7), 2335–2349. doi:10.1016/j.envpol.2010.03.024.

    Article  CAS  Google Scholar 

  • Kimura, K., Amy, G., Drewes, J. E., Heberer, T., Kim, T.-U., & Watanabe, Y. (2003). Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. Journal of Membrane Science, 227(1–2), 113–121. doi:10.1016/j.memsci.2003.09.005.

    Article  CAS  Google Scholar 

  • Kookana, R. S., Baskaran, S., & Naidu, R. (1998). Pesticide fate and behaviour in Australian soils in relation to contamination and management of soil and water: a review. Australian Journal of Soil Research, 36. doi:10.1071/SR97109.

  • Madsen, H. T., & Søgaard, E. G. (2014). Applicability and modelling of nanofiltration and reverse osmosis for remediation of groundwater polluted with pesticides and pesticide transformation products. Separation and Purification Technology, 125, 111–119. doi:10.1016/j.seppur.2014.01.038.

    Article  CAS  Google Scholar 

  • Mierzwa, J. C., Arieta, V., Verlage, M., Carvalho, J., & Vecitis, C. D. (2013). Effect of clay nanoparticles on the structure and performance of polyethersulfone ultrafitltration membranes. Desalination, 314, 147–158.

    Article  CAS  Google Scholar 

  • Ng, L. Y., Mohammad, A. W., Leo, C. P., & Hilal, N. (2013). Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination, 308, 15–33. doi:10.1016/j.desal.2010.11.033.

    Article  CAS  Google Scholar 

  • Plakas, K. V., & Karabelas, A. J. (2008). Membrane retention of herbicides from single and multi-solute media: the effect of ionic environment. Journal of Membrane Science, 320, 325–334. doi:10.1016/j.memsci.2008.04.016.

    Article  CAS  Google Scholar 

  • Plakas, K. V., & Karabelas, A. J. (2012). Removal of pesticides from water by NF and RO membranes—a review. Desalination, 287, 255–265. doi:10.1016/j.desal.2011.08.003.

    Article  CAS  Google Scholar 

  • Pyrzynska, K. (2011). Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere, 83(11), 1407–1413. doi:10.1016/j.chemosphere.2011.01.057.

    Article  CAS  Google Scholar 

  • Sánchez-González, S., Pose-Juan, E., Herrero-Hernández, E., Álvarez-Martín, A., Sánchez-Martín, M. J., & Rodríguez-Cruz, S. (2013). Pesticide residues in groundwaters and soils of agricultural areas in the Águeda River Basin from Spain and Portugal. International Journal of Environmental Analytical Chemistry, 93(15), 1585–1601. doi:10.1080/03067319.2013.814122.

    Article  Google Scholar 

  • Sarkar, B., Venkateswralu, N., Rao, R. N., Bhattacharjee, C., & Kale, V. (2007). Treatment of pesticide contaminated surface water for production of potable water by a coagulation-adsorption-nanofiltration approach. Desalination, 212(1–3), 129–140. doi:10.1016/j.desal.2006.09.021.

    Article  CAS  Google Scholar 

  • Schipper, P. N. M., Vissers, M. J. M., & van der Linden, A. M. A. (2008). Pesticides in groundwater and drinking water wells: Overview of the situation in the Netherlands. Water Science & Technology, 57(8), 1277–1286. doi:10.2166/wst.2008.255.

    Article  CAS  Google Scholar 

  • Sotto, A., Rashed, A., Zhang, R.-X., Martínez, A., Braken, L., Luis, P., & Van der Bruggen, B. (2012). Improved membrane structures for seawater desalination by studying the influence of sublayers. Desalination, 287, 317–325. doi:10.1016/j.desal.2011.09.024.

    Article  CAS  Google Scholar 

  • Strathmann, H., & Kock, K. (1977). The formation mechanism of phase inversion membranes. Desalination, 21, 241–255.

    Article  CAS  Google Scholar 

  • Thorling, L., Brüsch, W., Hansen, B., Larsen, C. L., Mielby, S., Troldnorg, L., & Sørensen, B. L. (2013). Grundvand - Status og udvikling 1989–2012 (Groundwater: Status and development 1989–2012). Technical report, Geological Survey of Denmark and Greenland, 2013.

  • Verliefde, A. R. D., Heijman, S. G. J., Cornelissen, E. R., Amy, G., Van der Bruggen, B., & van Dijk, J. C. (2007). Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water. Water Research, 41(15), 3227–3240. doi:10.1016/j.watres.2007.05.022.

    Article  CAS  Google Scholar 

  • Xie, M., Nghiem, L. D., Price, W. E., & Elimelech, M. (2012). Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis. Water Research, 46(8), 2683–2692. doi:10.1016/j.watres.2012.02.023.

    Article  CAS  Google Scholar 

  • Yangali-Quintanilla, V., Maeng, S. K., Fujioka, T., Kennedy, M., & Amy, G. (2010). Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse. Journal of Membrane Science, 362(1–2), 334–345. doi:10.1016/j.memsci.2010.06.058.

    Article  CAS  Google Scholar 

  • Zhang, R.-X., Vanneste, J., Poelmans, L., Sotto, A., Wang, X.-L., & Van der Bruggen, B. (2012). Effect of the manufacturing conditions on the structure and performance of thin-film composite membranes. Journal of Applied Polymer Science, 135, 3755–3769. doi:10.1002/app.36542.

    Article  Google Scholar 

  • Zhou, Q., Xiao, J., Wang, W., Liu, G., Shi, Q., & Wang, J. (2006). Determination of atrazine and simazine in environmental water samples using multiwalled carbon nanotubes as the adsorbents for preconcentration prior to high performance liquid chromatography with diode array detector. Talanta, 68(4), 1309–1315. doi:10.1016/j.talanta.2005.07.050.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks go to Giuseppe Genduso and Jiuyang Lin for help with SEM and membrane manufacturing. Economic support was received from the Otto Mønsted foundation. Financial support from the Danish Ministry of Science, Technology, and Innovation in the form of a Ph.D. study grant is acknowledged

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik T. Madsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madsen, H.T., Ammi-said, A., Van der Bruggen, B. et al. Addition of Adsorbents to Nanofiltration Membrane to Obtain Complete Pesticide Removal. Water Air Soil Pollut 226, 160 (2015). https://doi.org/10.1007/s11270-015-2419-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2419-1

Keywords

Navigation