Skip to main content
Log in

Photocatalytic Properties of Silver Incorporated Titania Nanoparticles Immobilized on Waste-Derived Polystyrene

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Silver-doped TiO2 (Ag-TiO2) immobilized onto polystyrene (PS) waste was prepared using a thermal attachment method. Its efficiencies as a photocatalyst under UVA light (λ = 365 nm) for the removal of Cr(VI), methylene blue, Escherichia coli, and Aspergillus niger from water were studied. The results showed that Ag-TiO2-PS material removes pollutants at significantly high rates and especially posseses strong disinfection properties. The morphological study of Ag-TiO2-PS material was carried out using X-ray diffraction, scanning electron microscope, and energy dispersive X-ray spectroscopy. The catalyst can be prepared using waste PS employing a simple immobilization method and it is highly effective for the removal of biological and chemical impurities from drinking and underground water supplies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Caballero, L., Whitehead, K. A., Allen, N. S., & Verran, J. (2009). Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. Journal of Photochemistry and Photobiology A: Chemistry, 202, 92–98.

    Article  CAS  Google Scholar 

  • Chatterjee, D., & Dasgupta, S. (2005). Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C, 6, 186–205.

    Article  CAS  Google Scholar 

  • Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 107, 2891–2959.

    Article  CAS  Google Scholar 

  • Colon, G., Hidalgo, M. C., Navio, J. A., Kubacka, A., & Fernandez-Garcia, M. (2009). Influence of sulfur on the structural, surface properties and photocatalytic activity of sulfated TiO2. Applied Catalysis B: Environmental, 90, 633–641.

    Article  CAS  Google Scholar 

  • Dey, N. K., Kim, M. J., Kim, K. D., Seo, H. O., Kim, D., Kim, Y. D., et al. (2011). Adsorption and photocatalytic degradation of methylene blue over TiO2 films on carbon fiber prepared by atomic layer deposition. Journal of Molecular Catalysis A-Chemistry, 337, 33–38.

    Article  CAS  Google Scholar 

  • Dunlop, P. S. M., Byrne, J. A., Manga, N., & Eggins, B. R. (2002). The photocatalytic removal of bacterial pollutants from drinking water. Journal of Photochemistry and Photobiology A: Chemistry, 148, 355–363.

    Article  CAS  Google Scholar 

  • Fabiyi, M. E., & Skelton, R. L. (2000). Photocatalytic mineralisation of methylene blue using buoyant TiO2-coated polystyrene beads. Journal of Photochemistry and Photobiology A: Chemistry, 132, 121–128.

    Article  CAS  Google Scholar 

  • Fan, J.-W., Liu, X.-H., & Zhang, J. (2011). The synthesis of TiO2 and TiO2-Pt and their application in the removal of Cr(VI). Environmental Technology, 32, 427–437.

    Article  CAS  Google Scholar 

  • Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95, 69–96.

    Article  CAS  Google Scholar 

  • Karunakaran, C., Rajeswari, V., & Gomathisankar, P. (2011). Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag-ZnO and ZnO. Solid State Science, 13, 923–928.

    Article  CAS  Google Scholar 

  • Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K., & Fujishima, A. (1997). Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. Journal of Photochemistry and Photobiology A: chemistry, 106, 51–56.

    Article  CAS  Google Scholar 

  • Ku, Y., Huang, Y.-H., & Chou, Y.-C. (2011). Preparation and characterization of ZnO/TiO2 for the photocatalytic reduction of Cr(VI) in aqueous solution. Journal of Molecular Catalysis A-Chemistry, 342–343, 18–22.

    Article  Google Scholar 

  • Kubacka, A., Colon, G., & Fernandez-Garcia, M. (2010). N- and/or W-(co)doped TiO2-anatase catalysts: effect of the calcination treatment on photoactivity. Applied Catalysis B: Environmental, 95, 238–244.

    Article  CAS  Google Scholar 

  • Li, H., Li, J., & Huo, Y. (2006). Highly active TiO2 photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions. Journal of Physical Chemistry B, 110, 1559–1565.

    Article  CAS  Google Scholar 

  • Li, X., Lv, K., Deng, K., Tang, J., Su, R., Sun, J., et al. (2009). Synthesis and characterization of ZnO and TiO2 hollow spheres with enhanced photoreactivity. Materials Science and Engineering, 158, 40–47.

    CAS  Google Scholar 

  • Li, Y., Ma, M., Chen, W., Li, L., & Zen, M. (2011). Preparation of Ag-doped TiO2 nanoparticles by a miniemulsion method and their photoactivity in visible light illuminations. Material Chemistry and Physics, 129, 501–505.

    Article  CAS  Google Scholar 

  • Liu, H., Zhou, Y., Huang, H., & Feng, Y. (2011). Phthalic acid modified TiO2 and enhanced photocatalytic reduction activity for Cr(VI) in aqueous solution. Desalination, 278, 434–437.

    Article  CAS  Google Scholar 

  • Lu, Y., Lunkenbein, T., Preussner, J., Proch, S., Breu, J., Kempe, R., et al. (2010). Composites of metal nanoparticles and TiO2 immobilized in spherical polyelectrolyte brushes. Langmuir, 26, 4176–4183.

    Article  CAS  Google Scholar 

  • Mo, S. D., Lin, L. B., & Lin, D. L. (1994). Electron-states of tron group impurities in doped rutile TiO2. Journal of Physics and Chemistry of Solids, 55, 1309–1313.

    Article  CAS  Google Scholar 

  • Nunes, M. R., Monteiro, O. C., Castro, A. L., Vasconcelos, D. A., & Silvestre, A. J. (2008). A new chemical route to synthesise TM-doped (TM = Co, Fe) TiO2 nanoparticles. European Journal of Inorganic Chemistry, 6, 961–965.

    Article  Google Scholar 

  • Sökmen, M., & Ozkan, A. (2002). Decolourising textile wastewater with modified titania: the effects of inorganic anions on the photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 147, 77–81.

    Article  Google Scholar 

  • Torimoto, T., Ito, S., Kuwabata, S., & Yoneyama, H. (1996). Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide. Environmental Science and Technology, 30, 1275–1281.

    Article  CAS  Google Scholar 

  • Tzou, Y. M., Loeppert, R. H., & Wang, M. K. (2003). Light-catalyzed chromium(VI) reduction by organic compounds and soil minerals. Journal of Environmental Quality, 32, 2076–2084.

    Article  CAS  Google Scholar 

  • Vohra, A., Goswami, D. Y., Deshpande, D. A., & Block, S. S. (2006). Enhanced photocatalytic disinfection of indoor air. Applied Catalysis B- Environmental, 64, 57–65.

    Article  CAS  Google Scholar 

  • Wang, N., Zhu, L., Deng, K., She, Y., Yu, Y., & Tang, H. (2010). Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids. Applied Catalysis B: Environmental, 95, 400–407.

    Article  CAS  Google Scholar 

  • Woan, K., Pyrgiotakis, G., & Sigmund, W. (2009). Photocatalytic carbon-nanotube-TiO2 composites. Advanced Materials, 21, 2233–2239.

    Article  CAS  Google Scholar 

  • Yang, S., Lou, L., Wang, K., & Chen, Y. (2006). Shift of initial mechanism in TiO2-assisted photocatalytic process. Applied Catalysis A General, 301, 152–157.

    Article  CAS  Google Scholar 

  • Yates, J. T. (2009). Photochemistry on TiO2: mechanisms behind the surface chemistry. Surface Science, 603, 1605–1612.

    Article  CAS  Google Scholar 

  • Yiming, X., & Langford, C. H. (1997). Photoactivity of titanium dioxide supported on MCM41, zeolite X, and zeolite Y. Journal of Physical Chemistry B, 101, 3115–3121.

    Article  Google Scholar 

  • Zan, L., Wang, S., Fa, W., Hu, Y., Tian, L., & Deng, K. (2006). Solid-phase photocatalytic degradation of polystyrene with modified nano-TiO2 catalyst. Polymer, 47, 8155–8162.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhou, M., & Lei, L. (2006). Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD. Catalysis Communications, 7, 427–431.

    Article  CAS  Google Scholar 

  • Zhao, G., & Stevens, S. E. (1998). Multiple parameters for the comprehensive evaluation of the susceptible of Escherichia coli to the silver ion. Biometals, 11, 27–32.

    Article  CAS  Google Scholar 

  • Zou, J. J., Zhu, B., Wang, L., Zhang, X. W., & Mi, Z. T. (2008). Zn- and La-modified TiO2 photocatalysts for the isomerization of norbornadiene to quadricyclane. Journal of Molecular Catalysis A: Chemical, 286, 63–69.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Turkish Research Council (TUBITAK, Grant Number 107T853) and Karadeniz Technical University (BAP, Grant Number 2010-111-002.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Münevver Sökmen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altın, İ., Sökmen, M. Photocatalytic Properties of Silver Incorporated Titania Nanoparticles Immobilized on Waste-Derived Polystyrene. Water Air Soil Pollut 225, 1786 (2014). https://doi.org/10.1007/s11270-013-1786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1786-8

Keywords

Navigation