Skip to main content

Advertisement

Log in

Biocalcification Mediated Reduction of PAHs Bioavailability in Artificially Contaminated Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Apart from natural CO2 sequestration, biocalcification process can reduce bioavailability of certain pollutants. In the present study, experiments were conducted to evaluate the change in bioavailability for three polycyclic aromatic hydrocarbons (PAHs) — anthracene (Ant), phenanthrene (Phe) and pyrene (Pyr) — either in normal soil extract that was spiked with PAHs (SESP) or spiked soil, after chemical calcification or biocalcification process. Results suggested that PAHs extractability in SESP (Ant: 2–4 mg/l, Phe: 3–6 mg/l and Pyr: 4.5–9 mg/l) after chemical precipitation of carbonate were not statistically different when compared to negative controls. However in biocalcification experiment the difference was statistically significant when conducted with SESP (P = 0.0425, α = 0.10) or soil (P = 0.035, α = 0.10). Supporting experiment revealed that the presence of microbial cells and sequence of Ca2+, CO3 −2 addition was important in determining the extent in PAHs bioavailability reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achal, V., Mukherjee, A., Basu, P. C., & Reddy, M. S. (2009). Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. Journal of Industrial Microbiology and Biotechnology, 36, 433–438.

    Article  CAS  Google Scholar 

  • Achal, V., Pan, X., Fu, Q., & Zhang, D. (2012). Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 201–202, 178–184.

    Article  Google Scholar 

  • Aimrun, W., Amin, M. S. M., Ahmad, D., Hanafi, M. M., & Chan, C. S. (2007). Spatial variability of bulk soil electrical conductivity in a Malaysian paddy field: key to soil management. Paddy and Water Environment, 5, 113–121.

    Article  Google Scholar 

  • Alexander, M. (2000). Aging, bioavailability, and overestimation of risk from environmental pollutants. Environmental Science & Technology, 34, 4259–4265.

    Article  CAS  Google Scholar 

  • Antemir, A., Hills, C. D., Carey, P. J., Gardner, K. H., Bates, E. R., & Crumbie, A. K. (2010). Long-term performance of aged waste forms treated by stabilization/solidification. Journal of Hazardous Materials, 181, 65–73.

    Article  CAS  Google Scholar 

  • Banks, E. D., Taylor, N. M., Gulley, J., Lubbers, B. R., Giarrizzo, J. G., Bullen, H. A., et al. (2010). Bacterial calcium carbonate precipitation in cave environments: a function of calcium homeostasis. Geomicrobiology Journal, 27, 444–454.

    Article  CAS  Google Scholar 

  • Bäuerlein, E. (2003). Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angewandte Chemie International Edition, 42, 614–641.

    Article  Google Scholar 

  • Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74, 63–67.

    Article  CAS  Google Scholar 

  • Chu, J., Stabnikov, V., & Ivanov, V. (2012). Microbially induced calcium carbonate precipitation on surface or in the bulk of soil. Geomicrobiology Journal, 29, 544–549.

    Article  CAS  Google Scholar 

  • Chunxiang, Q., Jianyun, W., Ruixing, W., & Liang, C. (2009). Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Materials Science and Engineering, 29, 1273–1280.

    Article  Google Scholar 

  • Cicerone, D. S., Stewart, A. J., & Roh, Y. (1999). Diel cycles in calcite production and dissolution in a eutrophic basin. Environmental Toxicology and Chemistry, 18, 2169–2177.

    CAS  Google Scholar 

  • Cornelissen, G., Breedveld, G. D., Kalaitzidis, S., Christanis, K., Kibsgaard, A., & Oen, A. M. P. (2006). Strong sorption of native PAHs to pyrogenic and unburned carbonaceous geosorbents in sediments. Environmental Science & Technology, 40, 1197–1203.

    Article  CAS  Google Scholar 

  • Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141–162.

    Article  CAS  Google Scholar 

  • Fierer, N., & Schimel, J. P. (2002). Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 34, 777–787.

    Article  CAS  Google Scholar 

  • Fortin, D., Ferris, F. G., & Beveridge, T. J. (1997). Surface-mediated mineral development by bacteria. Reviews in Mineralogy, 35, 161–180.

    CAS  Google Scholar 

  • Fujita, Y., Redden, G. D., Ingram, J. C., Cortez, M. M., Ferris, F. G., & Smith, R. W. (2004). Strontium incorporation into calcite generated by bacterial ureolysis. Geochimica et Cosmochimica Acta, 68, 3261–3270.

    Article  CAS  Google Scholar 

  • Haluschak, P. (2006). Laboratory methods of soil analysis. Canada-Manitoba Soil Survey, 3–133.

  • Hundal, L. S., Thompson, M. L., Laird, D. A., & Carmo, A. M. (2001). Sorption of phenanthrene by reference smectites. Environmental Science & Technology, 35, 3456–3461.

    Article  CAS  Google Scholar 

  • Hunter, R. C., Phoenix, V. R., Saxena, A., & Beveridge, T. J. (2010). Impact of growth environment and physiological state on metal immobilization by Pseudomonas aeruginosa PAO1. Canadian Journal of Microbiology, 56, 527–538.

    Article  CAS  Google Scholar 

  • Johnsen, A. R., Wick, L. Y., & Harms, H. (2005). Principles of microbial PAH-degradation in soil. Environmental Pollution, 133, 71–84.

    Article  CAS  Google Scholar 

  • Johnson, K. J., Ams, D. A., Wedel, A. N., Szymanowski, J. E. S., Weber, D. L., Schneegurt, M. A., et al. (2007). The impact of metabolic state on Cd adsorption onto bacterial cells. Geobiology, 5, 211–218.

    Article  CAS  Google Scholar 

  • Kettler, T. A., Doran, J. W., & Gilbert, T. L. (2001). Simplified method for particle size determination to accompany soil-quality assessment. Soil Science Society of America Journal, 65, 849–852.

    Article  CAS  Google Scholar 

  • Keykha, H. A., Huat, B. B. K., Asadi, A., & Kawasaki, S. (2012). Electro-biogrouting and its challenges. International Journal of Electrochemical Science, 7, 1196–1204.

    CAS  Google Scholar 

  • Kreitinger, J. P., Neuhauser, E. F., Doherty, F. G., & Hawthorne, S. B. (2007). Greatly reduced bioavailability and toxicity of polycyclic aromatic hydrocarbons to Hyalella azteca in sediments from manufactured-gas plant sites. Environmental Toxicology and Chemistry, 26, 1146–1157.

    Article  CAS  Google Scholar 

  • Li, Y., Shi, Z., Wu, C., Li, H., & Li, F. (2008). Determination of potential management zones from soil electrical conductivity, yield and crop data. Journal of Zhejiang University. Science. B, 9, 68–76.

    Article  Google Scholar 

  • Mastral, A. M., & Callén, M. S. (2000). A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environmental Science & Technology, 34, 3051–3057.

    Article  CAS  Google Scholar 

  • Meylan, W. M., Howard, P. H., Boethling, R. S., Aronson, D., Printup, H., & Gouchie, S. (1999). Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient. Environmental Toxicology and Chemistry, 18, 664–672.

    Article  CAS  Google Scholar 

  • Mrozik, A., Piotrowska-Seget, Z., & Łabużek, S. (2003). Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Polish Journal of Environmental Studies, 12, 15–25.

    CAS  Google Scholar 

  • Mustafa, T., Demirhan, C., & Mustafa, S. (2008). 5-Chloro-2-hydroxyanilinecopper (II) coprecipitation system for preconcentration and separation of lead and chromium at trace levels. Journal of Hazardous Material, 158, 137–141.

    Article  Google Scholar 

  • Ohki, S., & Arnold, K. (1990). Surface dielectric constant, surface hydrophobicity and membrane fusion. The Journal of Membrane Biology, 114, 195–203.

    Article  CAS  Google Scholar 

  • Ramirez, N., Cutright, T., & Ju, L. K. (2001). Pyrene biodegradation in aqueous solutions and soil slurries by Mycobacterium PYR-1 and enriched consortium. Chemosphere, 44, 1079–1086.

    Article  CAS  Google Scholar 

  • Reid, B. J., Northcott, G. L., Jones, K. C., & Semple, K. T. (1998). Evaluation of spiking procedures for the introduction of poorly water soluble contaminants into soil. Environmental Science & Technology, 32, 3224–3227.

    Article  CAS  Google Scholar 

  • Rivadeneyra, M. A., Delgado, G., Ramos-Cormenzana, A., & Delgado, R. (1998). Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Research in Microbiology, 149, 277–287.

    Article  CAS  Google Scholar 

  • Rodrigues, A. C., Wuertz, S., Brito, A. G., & Melo, L. F. (2005). Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: kinetics and physiological aspects. Biotechnology and Bioengineering, 90, 281–289.

    Article  CAS  Google Scholar 

  • Ross, S. M. (2009). Introduction to probability and statistics for engineers and scientists (4th ed.). New York: Academic Press.

    Google Scholar 

  • Sathe, T. R., Agrawal, A., & Nie, S. M. (2006). Mesoporous silica beads included with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Analytical Chemistry, 78, 5627–5632.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., Gschwend, P. M., & Imboden, D. M. (2003). Environmental organic chemistry (2nd ed.). New York: Wiley.

    Google Scholar 

  • Shu, Y. Y., Lai, T. L., Lin, H., Yang, T. C., & Chang, C. P. (2003). Study of factors affecting on the extraction efficiency of polycyclic aromatic hydrocarbons from soils using open-vessel focused microwave-assisted extraction. Chemosphere, 52, 1667–1676.

    Article  CAS  Google Scholar 

  • Skrbic, B., & Durisic-Mladenovic, N. (2007). Principal component analysis for soil contamination with organochlorine compounds. Chemosphere, 68, 2144–2152.

    Article  CAS  Google Scholar 

  • Song, Y. F., Jing, X., Fleischmann, S., & Wilke, B. M. (2002). Comparative study of extraction methods for the determination of PAHs from contaminated soils and sediments. Chemosphere, 48, 993–1001.

    Article  CAS  Google Scholar 

  • Stringfellow, W. T., & Alvarez-Cohen, L. (1999). Evaluating the relationship between the sorption of PAHs to bacterial biomass and biodegradation. Water Research, 33, 2535–2544.

    Article  CAS  Google Scholar 

  • Sverdrup, L. E., Nielsen, T., & Krogh, P. H. (2002). Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility. Environmental Science & Technology, 36, 2429–2435.

    Article  CAS  Google Scholar 

  • Tang, J., Petersen, E. J., Huang, Q., & Weber, W. J. (2007). Development of engineered natural organic sorbents for environmental applications: 3. Reducing PAH mobility and bioavailability in contaminated soil and sediment systems. Environmental Science & Technology, 41, 2901–2907.

    Article  CAS  Google Scholar 

  • van Noort, P. C. M. (2009). Estimation of amorphous organic carbon/water partition coefficients, subcooled aqueous solubilities, and n-octanol/water distribution coefficients of alkylbenzenes and polycyclic aromatic hydrocarbons. Chemosphere, 74, 1018–1023.

    Article  Google Scholar 

  • Warren, L. A., Maurice, P. A., Parmar, N., & Ferris, F. G. (2001). Microbially mediated calcium carbonate precipitation: Implications for interpreting calcite precipitation and for solid phase capture of inorganic contaminants. Geomicrobiology Journal, 18, 93–115.

    Article  CAS  Google Scholar 

  • Weber, W. J., Tang, J., & Huang, Q. (2006). Development of engineered natural organic sorbents for environmental applications: 1. Materials, approaches, and characterizations. Environmental Science & Technology, 40, 1650–1656.

    Article  CAS  Google Scholar 

  • Wicke, D., Böckelmann, U., & Reemtsma, T. (2007). Experimental and modeling approach to study sorption of dissolved hydrophobic organic contaminants to microbial biofilms. Water Research, 41, 2202–2210.

    Article  CAS  Google Scholar 

  • Wright, D. T., & Oren, A. (2005). Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time. Geomicrobiology Journal, 22, 27–53.

    Article  CAS  Google Scholar 

  • Xiao, L., Qu, X., & Zhu, D. (2007). Biosorption of nonpolar hydrophobic organic compounds to Escherichia coli facilitated by metal and proton surface binding. Environmental Science & Technology, 41, 2750–2755.

    Article  CAS  Google Scholar 

  • Zhao, D. H., & Gao, H. W. (2010). Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye. Environmental Science and Pollution Research, 17, 97–105.

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (CGK) acknowledges the financial support from NRF under the project of enhancement of CO2 biomineralization employing alkaline metals releaser.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswanath Mahanty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahanty, B., Kim, S. & Kim, C.G. Biocalcification Mediated Reduction of PAHs Bioavailability in Artificially Contaminated Soil. Water Air Soil Pollut 224, 1479 (2013). https://doi.org/10.1007/s11270-013-1479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1479-3

Keywords

Navigation