Skip to main content
Log in

Reproductive, Cellular, and Anatomical Alterations in Pistia stratiotes L. Plants Exposed to Cadmium

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

We evaluated the toxic effects of cadmium (Cd) on reproduction, the mitotic cycle, and on the root and leaf anatomy of Pistia stratiotes. Reductions in reproductive structures, symptoms of toxicity, and abnormalities in the cell cycle were noted in plants submitted to the highest Cd concentrations. The effects of the highest concentrations of cadmium could also be observed in the thickening of the epidermis, exoderm, and endoderm of the roots and by reductions in the number of crystalline idioblasts. Furthermore, decreases in the percentages of aerenchyma in the leaf blades and increases in the Carlquist vulnerability indexes of plants exposed to the highest concentrations of Cd were observed. The phytotoxicity of cadmium was quite evident in P. stratiotes, and it could thus be used as a bioindicator species as it was also tolerant of that pollutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arroyo, V. S., Flores, K. M., Ortiz, L. B., Gómez-Quiroz, L. E., & Gutiérrez-Ruiz, M. C. (2012). Liver and cadmium toxicity. Journal of Drug Metabolism & Toxicology. doi:10.4172/2157-7609.S5-001.

  • Behboodi, B. S., & Samadi, L. (2004). Detection of apoptotic bodies and oligonucleosomal DNA fragments in cadmium-treated root apical cells of Allium cepa Linnaeus. Plant Science, 167(3), 411–416.

    Article  CAS  Google Scholar 

  • Brasil. Congresso, Senado, Resolução nº 430, 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução nº 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente-CONAMA. Coleção de Leis da República Federativa do Brasil, Brasília.

  • Carlquist, S. (1977). Ecological factors in wood evolution: a floristic approach. American Journal of Botany, 64(7), 887–896.

    Article  Google Scholar 

  • Chiarelli, R., & Roccheri, M. C. (2012). Heavy metals and metalloids as autophagy inducing agents: focus on cadmium and arsenic. Cells, 1, 597–616.

    Article  CAS  Google Scholar 

  • Coelho, F. F., Deboni, L., & Lopes, F. S. (2005). Density-dependent reproductive and vegetative allocation in the aquatic plant Pistia stratiotes (Araceae). Revista de Biologia Tropical, 53(3–4), 369–376.

    Google Scholar 

  • Enstone, D. E., Peterson, C. A., & Ma, F. S. (2003). Root endodermis and exodermis: structure, function, and responses to the environment. Journal of Plant Growth Regulation, 21(4), 335–351.

    Article  Google Scholar 

  • Evans, T. H. J. (1962). Chromosome aberrations induced by ionizing radiations. International Review of Cytology, 13, 221–321.

    Article  CAS  Google Scholar 

  • Fatur, T., Lah, T. T., & Filipic, M. (2003). Cadmium inhibits repair of UV-, methyl methanesulfonate- and N-methyl-N-nitrosourea-induced DNA damage in Chinese hamster ovary cells. Mutation Research, 529(1–2), 109–116.

    Article  CAS  Google Scholar 

  • Fiskesjö, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102(1), 99–112.

    Article  Google Scholar 

  • Fiskesjö, G. (1993). Technical methods section, Allium test I: A 2-3 day plant test for toxicity assessment by measuring the mean root growth of onions (Allium cepa L,). Environmental Toxicology and Water, 8(4), 461–470.

    Article  Google Scholar 

  • Gaulden, M. E. (1987). Hypothesis: some mutagens directly alter specific chromosomal proteins (DNA topoisomerase II and peripheral proteins) to produce chromosome stickiness, which causes chromosome aberrations. Mutagenesis, 2(5), 357–365.

    Article  CAS  Google Scholar 

  • Hacke, U. G., & Sperry, J. S. (2001). Functional and ecological xylem anatomy. Perspectives in Plant Ecology, 4(2), 97–115.

    Article  Google Scholar 

  • Hart, J. J., Welch, R. M., Norvell, W. A., Sullivan, L. A., & Kochian, L. V. (1998). Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiology, 116(44), 1413–1420.

    Article  CAS  Google Scholar 

  • He, C. J., Finlayson, S. A., Drew, M. C., Jordan, W. R., & Morgan, P. W. (1996). Ethylene biosynthesis during aerenchyma formation in roots of Zea mays subjected to mechanical impedance and hypoxia. Plant Physiology, 112(4), 1679–1685.

    CAS  Google Scholar 

  • He, C. J., Morgan, P. W., & Drew, M. C. (1996). Transduction of an ethylene signal required for cell death and lysis in the root cortex of maize during aerenchyma formation during hypoxia. Plant Physiology, 112(2), 463–472.

    CAS  Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California: California Agricultural Experimental Station.

    Google Scholar 

  • Jensen, W. A. (1962). Botanical histochemistry: principle and practice. San Francisco: W H Freeman.

    Google Scholar 

  • Jonak, C., Nakagami, H., & Hirt, H. (2004). Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiology, 136(19), 3276–3283.

    Article  CAS  Google Scholar 

  • Johansen, D. A. (1940). Plant microtechnique. New York: McGraw- Hill Book Company.

    Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.

    Book  Google Scholar 

  • Kah, M., Levy, L., & Brown, C. (2012). Potential for effects of land contamination on human health. 1. The Case of Cadmium. Journal of Toxicology and Environmental Health, 15(5), 348–363.

    Article  CAS  Google Scholar 

  • Kenskinkan, O., Goksu, M. Z. L., Yuceer, A., Basibuyuk, M., & Foster, C. F. (2003). Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochemistry, 39(2), 179–183.

    Article  Google Scholar 

  • Lu, Q., He, Z. L., Graetz, D. A., Stofella, P. J., & Yang, X. (2010). Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environmental Science & Pollution Research, 17(1), 84–96.

    Article  CAS  Google Scholar 

  • Lux, A., Sottníková, A., Opatrná, J., & Greger, M. (2004). Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiologia Plantarum, 120(4), 537–545.

    Article  CAS  Google Scholar 

  • Malavolta, E. (1994). Fertilizantes e seu impacto ambiental: micronutrientes e metais pesados, mitos, mistificações e fatos. São Paulo: ProduQuímica.

    Google Scholar 

  • Marques, T. C. L. L. S. M., Soares, A. M., Gomes, M. P., & Martins, G. (2011). Respostas fisiológicas e anatômicas de plantas jovens de eucalipto expostas ao cádmio. Revista Árvore, 29(5), 997–1006.

    Article  Google Scholar 

  • Mirsha, V. K., & Tripathi, B. D. (2008). Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology, 99(15), 7091–7097.

    Article  Google Scholar 

  • Misra, R. R., Smith, G. T., & Waalkes, M. P. (1998). Evaluation or the direct genotoxic potential of cadmium in four different rodent cell lines. Toxicology, 126(2), 103–114.

    Article  CAS  Google Scholar 

  • Melo, E. E. C., Costa, E. T. C., Guilherme, L. R. G., Faquin, V., & Nascimento, C. W. A. (2009). Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. Journal of Hazardous Materials, 168(1), 479–483.

    Article  CAS  Google Scholar 

  • Monteiro, M. S., Rodriguez, E., Loureiro, J., Mann, R. M., Soares, A. M. V. M., & Santos, C. (2010). Flow cytometric assessment of Cd genotoxicity in three plants with different metal accumulation and detoxification capacities. Ecotoxicology and Environmental Safety, 73(6), 1231–1237.

    Article  CAS  Google Scholar 

  • Pereira, F. J., Castro, E. M., Souza, T. C., & Magalhães, P. C. (2008). Evolução da anatomia radicular do milho ‘Saracura’ em ciclos de seleção sucessivos. Pesquisa Agropecuária Brasileira, 43(12), 1649–1656.

    Article  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56(1), 15–39.

    Article  CAS  Google Scholar 

  • Oliveira, C. (2010). Características morfoanatômicas e fisiológicas na avaliação do potencial bioindicador e fitorremediador de Pistia stratiotes L., na presença de cádmio, chumbo e arsênio. Dissertação (Mestrado em Agronomia/ Fisiologia Vegetal). Lavras: Universidade Federal de Lavras.

    Google Scholar 

  • Rojas, E., Herrera, L. A., Poirier, L. A., & Ostrosky-Wegman, P. (1999). Are metals dietary carcinogens? Mutation Research, 443(1–2), 157–181.

    Article  CAS  Google Scholar 

  • Skinner, K., Wright, N., & Porter-Goff, E. (2007). Mercury uptake and accumulation by four species of aquatic plants. Environmental Pollution, 145(1), 234–237.

    Article  CAS  Google Scholar 

  • Soares, C. R. F. S., Siqueira, J. O., Carvalho, J. G., & Moreira, F. M. S. (2005). Fitotoxidez de cádmio para Eucalyptus maculata e E. urophylla em solução nutritiva. Revista Árvore, 29(2), 175–183.

    Article  CAS  Google Scholar 

  • Souza, V. L., Silva, D. C., Santana, K. B., Mielke, M. S., Almeida, A. F., Mangabeira, P. A. O., et al. (2009). Efeitos do cádmio na anatomia e na fotossíntese de duas macrófitas aquáticas. Acta Botanica Brasilica, 23(2), 343–354.

    Article  Google Scholar 

  • Taiz, L., & Zeiger, E. (2010). Plant Physiology. Sunderland: Sinauer Associates.

    Google Scholar 

  • Tan, K. H. (2000). Enviromental soil science. New York: Marcel Dekker.

    Google Scholar 

  • di Toppi, L. S., & Gabrielli, R. (1999). Response to cadmium in higher plants. Environmental and Experimental Botany, 41(2), 105–130.

    Article  Google Scholar 

  • Ünyayar, S., Çelik, A., Özlem, Ç. F., & Gözel, A. (2006). Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis, 21(1), 77–81.

    Article  Google Scholar 

  • Wilcox, D., Dove, B., McDavid, D., & Greer, D. (2002). Software Image tool Version 3.0. Texas: The University of Texas, Health Science Center in San Antonio.

    Google Scholar 

  • Wolff, G. A., Assis, L. R., Pereira, G. C., Carvalho, J. G., & Castro, E. M. (2009). Efeitos da toxicidade do zinco em folhas de Salvinia auriculata cultivadas em solução nutritiva. Planta Daninha, 27(1), 33–137.

    Article  Google Scholar 

  • Zimmels, Y., Kirzhner, F., & Malkovskaja, A. (2006). Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel. Journal of Environmental Management, 81(4), 420–428.

    Article  CAS  Google Scholar 

  • Zhou, Q. A., Zhang, J., Fu, J., Shi, J., & Jiang, G. (2008). Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta, 606(2), 135–150.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Fundação de Apoio à Pesquisa de Minas Gerais for sponsoring this project and Dr. Fernando Lisboa Guedes for helping with the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vânia Helena Techio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, S.A., Techio, V.H., de Castro, E.M. et al. Reproductive, Cellular, and Anatomical Alterations in Pistia stratiotes L. Plants Exposed to Cadmium. Water Air Soil Pollut 224, 1454 (2013). https://doi.org/10.1007/s11270-013-1454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1454-z

Keywords

Navigation