Skip to main content
Log in

A Study Employing Differents Clays for Fe and Mn Removal in the Treatment of Acid Mine Drainage

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Acid mine drainage (AMD) has long been a significant environmental problem that impairs water resources in historic or current mining industries throughout the world. One of the methods using passive treatment system at low cost to remove metals from solution involves the use of clays. The ability of three different adsorbents (montmorillonite K-10, bentonite (NT-25), and hydrotalcite (HT)) to remove Fe and Mn from aqueous solutions and acid mine drainage samples has been studied at different optimized conditions such as pH, amount of adsorbent and contact time. Flame atomic absorption spectrometer (FAAS) was used for measuring Fe and Mn concentrations. Langmuir and Freundlich isotherms were applied and isotherm coefficients were computed. A kinectic study was also developed for HT using the first order, second order and intraparticle diffusion models. A great amount of clay (more than 100 mg) and also contact times higher than 60 min had also no influence in the adsorption capacity for all adsorbents. HT was found to be the best among the studied clays removing more than 90 % of Fe and Mn for all AMD samples investigated. Moreover, the maximum adsorption capacity was 63.7 mg Mn g−1 HT and 666.7 mg Fe g−1 HT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akcil, A., & Koldas, S. (2006). Acid mine drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, 14(12–13), 1139–1145.

    Article  Google Scholar 

  • Bhattacharyya, K. G., & Gupta, S. S. (2006). Adsorption of Fe (III) from water by natural and acid activated clays: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption, 12, 185–204.

    Article  CAS  Google Scholar 

  • CONAMA (2005). Resolução nº 357/2005, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União, 18 de março de 2005, p. 7–8.

  • Crossgrove, J., & Zheng, W. (2004). Manganese toxicity upon overexposure. NMR in Biomedicine, 17(8), 544–553.

    Article  CAS  Google Scholar 

  • Dal Bosco, S. M., Jimenez, R. S., Vignado, C., Fontana, J., Geraldo, B., Figueiredo, F. C. A., Mandelli, D., & Carvalho, W. A. (2006). Removal of Mn(II) and Cd(II) from wastewaters by natural and modified clays. Adsorption, 12, 133–146.

    Article  CAS  Google Scholar 

  • Doye, I., & Duchesne, J. (2003). Neutralisation of acid mine drainage with alkaline industrial residues: laboratory investigation using batch-leaching tests. Applied Geochemistry, 18, 1197–1213.

    Article  CAS  Google Scholar 

  • Edwards, J. D., Barton, C. D., & Karathanasis, A. D. (2009). A small-scale sulfate-reducing bioreactor for manganese removal from a synthetic mine drainage. Water, Air, and Soil Pollution, 203, 267–275.

    Article  CAS  Google Scholar 

  • Ferreira, O. P., Alves, O. L., Macedo, J. S., Gimenez, I. F., & Ferreira, L. B. (2007). Ecomateriais: desenvolvimento e aplicação de materiais porosos funcionais para proteção ambiental. Química Nova, 30, 464–467.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. Zeitschrift für Physikalische Chemie, 57 A, 385–470.

    Google Scholar 

  • Gaikwad, R. W., & Gupta, D. V. (2008). Review on removal of heavy metals from acid mine drainage. Applied Ecology and Environmental Research, 6(3), 81–98.

    Google Scholar 

  • Gazea, B., Adam, K., & Kontopoulos, A. (1996). A review of passive systems for the treatment of acid mine drainage. Minerals Engineering, 9, 23–42.

    Article  CAS  Google Scholar 

  • Gupta, S. S., & Bhattacharyya, K. G. (2005). Interaction of metal ions with clays: i. A case study with Pb(II). Applied Clay Science, 30, 199–208.

    Article  Google Scholar 

  • Hallberg, K. B., & Johnson, D. B. (2005). Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors. Science of Total Environmental, 338, 115–124.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Process Safety and Environmental Protection, 76(2), 183–191.

    Article  CAS  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: a review. The Science of the Total Environment, 338, 3–14.

    Article  CAS  Google Scholar 

  • Kalin, M., Fyson, A., & Wheeler, W. N. (2006). The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Science of the Total Environonment, 366, 395–408.

    Article  CAS  Google Scholar 

  • Kim, Y., Kim, J. H., Lee, K. G., & Kang, S. G. (2005). Adsorption behavior of heavy metal ions in the solutions of clay minerals under various conditions. Journal of Ceramic Processing Research, 6(1), 25–30.

    Google Scholar 

  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska vetenskapsakademiens Handlingar, 24(4), 1–39.

    Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38, 2221–2295.

    Article  CAS  Google Scholar 

  • Lesley, B., Daniel, H., & Paul, Y. (2008). Iron and manganese removal in wetland treatment systems: rates, processes and implications for management. The Science of the Total Environment, 394, 1–8.

    Article  CAS  Google Scholar 

  • Letovsky, E., Heal, K. V., Carvalho, L., & Spears, B. M. (2012). Intracellular versus extracellular iron accumulation in freshwater periphytic mats across a mine water treatment lagoon. Water, Air, and Soil Pollution, 223, 1519–1530.

    Article  CAS  Google Scholar 

  • Matlock, M. M., Howerton, B. S., & Atwood, D. A. (2002). Chemical precipitation of heavy metals from acid mine drainage. Water Research, 36, 4757–4764.

    Article  CAS  Google Scholar 

  • Mohan, D., & Chander, S. (2006). Removal and recovery of metal ions from acid mine drainage using lignite—a low cost sorbent. Journal of Hazardous Materials, 137, 1545–1553.

    Article  CAS  Google Scholar 

  • Naseem, R., & Tahir, S. S. (2001). Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Research, 35(16), 3982–3986.

    Article  CAS  Google Scholar 

  • Paulino, A. T., Minasse, F. A. S., Guilherme, M. R., Reis, A. V., Muniz, E. C., & Nozaki, J. (2006). Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters. Journal of Colloid and Interface Science, 301, 479–487.

    Article  CAS  Google Scholar 

  • Prasad, B., & Mortimer, R. G. (2011). Treatment of acid mine drainage using Fly Ash zeolite. Water, Air, and Soil Pollution, 218, 667–679.

    Article  CAS  Google Scholar 

  • Rodrigues, J. C., Costa, T. M. H., Gallas, M. R., & Moro, C. C. (2009). Influence of high-pressure processing on the structure and memory effect of synthetic layered double hydroxides. Physics and Chemistry of Minerals, 36, 439–446.

    Article  CAS  Google Scholar 

  • Rodríguez-Sarmiento, D. C., & Pinzón-Bello, J. A. (2001). Adsorption of sodium dodecylbenzene sulfonate on organophilic bentonites. Applied Clay Science, 18, 173–181.

    Article  Google Scholar 

  • Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals Engineering, 19, 105–116.

    Article  CAS  Google Scholar 

  • Suárez, D. R., Zeifert, B. H., Garduño, M. H., Blásquez, J. S., & Serrano, A. R. (2007). Cu hydrotalcite-like compounds: morphological, structural and microstructural properties. Journal of Alloys and Compounds, 434–435, 783–787.

    Article  Google Scholar 

  • Subramanian, B., & Gupta, G. (2006). Adsorption of trace elements from poultry litter by montmorillonite clay. Journal of Hazardous Materials, 128, 80–83.

    Article  CAS  Google Scholar 

  • Vaccari, A. (1998). Preparation and catalytic properties of cationic and anionic clays. Catalysis Today, 41, 53–71.

    Article  CAS  Google Scholar 

  • Vuori, K. M. (1995). Direct and indirect effects of iron in rivers ecosystems. Annales Zoologici Fennici, 32, 317–329.

    Google Scholar 

  • Weber, W. J., Jr., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89, 31–60.

    Google Scholar 

  • Webster, J. G., Swedlund, P. J., & Webster, K. S. (1998). Trace metal adsorption onto an acid mine drainage. Environmental Science and Technology, 32, 1361–1368.

    Article  CAS  Google Scholar 

  • Xu, C. Y., Schwartz, F. W., & Samuel, J. T. (1997). Treatment of acid mine water with calcite and quartz sand. Environmental Engineering Science, 141, 141–152.

    Article  Google Scholar 

  • Yapar, S., & Yilmaz, M. (2004). Removal of phenol by using montmorillonite, clinoptilolite and hydrotalcite. Adsorption, 10, 287–298.

    Article  CAS  Google Scholar 

  • Yoo, K., Hiroyoshi, N., & Tsunekawa, M. (2010). Removal of Mn ions by biological co-precipitation of Fe ions. Geosystem Engineering, 13(3), 91–96.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Maria Maia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldani, E., Moro, C.C. & Maia, S.M. A Study Employing Differents Clays for Fe and Mn Removal in the Treatment of Acid Mine Drainage. Water Air Soil Pollut 224, 1401 (2013). https://doi.org/10.1007/s11270-012-1401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-012-1401-4

Keywords

Navigation