Skip to main content
Log in

Vermiculite in Fluidized Bed as Decontaminating Agent for Liquid Phases

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Over the last decades, removal of potentially toxic and hazardous materials has received a great deal of attention in the field of environmental pollution. Problems associated with the disposal of the wastes of different kinds of industries led to studies of the sorption–uptake properties of clay minerals and zeolites. In the present research, the behavior of vermiculite particles ranging between 425 and 500 μm in a laboratory-scale fluidized bed column for uptake of Cs, Hg, and Mn ions from aqueous solutions and wastes in the presence of competing cations has been studied in order to investigate techniques for decontamination of liquid phases. Vermiculite selectively removed high percentages of Cs even from low concentrations in the presence of competing cations. Also removed were up to 60 % of added Hg2+ at concentrations of 5 ppm from drinking water and about 84 % from seawater, and furthermore, Mn2+ was selectively removed from low-concentration (ca 10 ppm) industrial wastes even when the ratio of Mn2+ to competing cations was 1:94. The results suggest the potential use of vermiculite as decontaminating agent in well-designed fluidized bed columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-Elfattah, A., & Wada, K. (1981). Adsorption of lead, copper, zinc, cobalt and cadmium by soils that differ in cation-exchange materials. Journal of Soil Science, 32, 271–283.

    Article  CAS  Google Scholar 

  • Abollino, O., Giacomino, A., Malandrino, M., & Mentasti, E. (2007). The efficiency of vermiculite as natural sorbent for heavy metals. Application to a contaminated soil. Water, Air, and Soil Pollution, 181, 149–160.

    Article  CAS  Google Scholar 

  • Abollino, O., Giacomino, A., Malandrino, M., & Mentasti, E. (2008). Interaction of metal ions with montmorillonite and vermiculite. Applied Clay Science, 38, 227–236.

    Article  CAS  Google Scholar 

  • Alexiades, C.A. (1986). Clay, inorganic and organic soil colloids. Thessaloniki, Greece: Aristotle University of Thessaloniki.

  • Alexiades, C. A., & Jackson, M. L. (1966). Quantitative clay mineralogical analysis of soils and sediments. Clays and Clay Minerals, 14, 35–52.

    Article  CAS  Google Scholar 

  • Al-Saleh, I. A. (2009). Health implications of mercury exposure in children. International Journal of Environment and Health, 3, 22–57.

    Article  CAS  Google Scholar 

  • Anagnostopoulos, A. C. (1989). Environmental pollution. Thessaloniki, Greece: Aristotle University of Thessaloniki.

  • Andersson, K. G., Roed, J., & Fogh, C. L. (2002). Weathering of radiocaesium contamination on urban streets, walls and roofs. Journal of Environmental Radioactivity, 62, 49–60.

    Article  CAS  Google Scholar 

  • Borai, E. H., Harjula, R., Malinen, L., & Paajanen, A. (2009). Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. Journal of Hazardous Materials, 172, 416–422.

    Article  CAS  Google Scholar 

  • Brigatti, M. F., Colonna, S., Malferrari, D., Medici, L., & Poppi, L. (2005). Mercury adsorption by montmorillonite and vermiculite: a combined XRD, TG-MS, and EXAFS study. Applied Clay Science, 28, 1–8.

    Article  CAS  Google Scholar 

  • Burger, J. (2009). Risk to consumers from mercury in bluefish (Pomatomus saltatrix) from New Jersey: size, season and geographical effects. Environmental Research, 109, 803–811.

    Article  CAS  Google Scholar 

  • Douglas, L. A. (1977). Vermiculites. In J. B. Dixon, S. B. Weed, J. A. Kittrick, M. H. Milford, & J. L. White (Eds.), Minerals in soil environments (pp. 259–292). Wisconsin: Soil Science Society of America Journal Madison.

    Google Scholar 

  • El-Bayaa, A. A., Badawy, N. A., & Abd AlKhalik, E. (2009). Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral. Journal of Hazardous Materials, 170, 1204–1209.

    Article  CAS  Google Scholar 

  • Froehner, S., Machado, K. S., & Falcão, F. (2010). Adsorption of dibenzothiophene by vermiculite in hydrophobic form, impregnated with copper ions and in natural form. Water, Air, and Soil Pollution, 209, 357–363.

    Article  CAS  Google Scholar 

  • Furnare, L. J., Vailionis, A., & Strawn, D. G. (2005a). Molecular-level investigation into copper complexes on vermiculite: effect of reduction of structural iron on copper complexation. Journal of Colloid and Interface Science, 289, 1–13.

    Article  CAS  Google Scholar 

  • Furnare, L. J., Vailionis, A., & Strawn, D. G. (2005b). Polarized XANES and EXAFS spectroscopic investigation into copper(II) complexes on vermiculite. Geochimica et Cosmochimica Acta, 69, 5219–5231.

    Article  CAS  Google Scholar 

  • Godelitsas, A., Misaelides, P., Charistos, D., Filippidis, A., & Anousis, I. (1996a). Interaction of HEU-type zeolite crystals with thorium aqueous solutions. Chemie der Erde/Geochemistry, 56, 143–156.

    Google Scholar 

  • Godelitsas, A., Misaelides, P., Filippidis, A., Charistos, D., & Anousis, I. (1996b). Uranium sorption from aqueous solutions on sodium-form of HEY-type zeolite crystals. Journal of Radioanalytical and Nuclear Chemistry, 208, 393–402.

    Article  CAS  Google Scholar 

  • Jackson, M. L. (1974). Soil chemical analysis—advance course. Dept. of Soil Science, Univ. of Wisconsin, Madison. Publ. by author

  • Kantiranis, N., Sikalidis, K., Godelitsas, A., Squires, C., Papastergios, G., & Filippidis, A. (2011). Extra-framework cation release from heulandite-type rich tuffs on exchange with NH4+. Journal of Environmental Management, 92, 1569–1576.

    Article  CAS  Google Scholar 

  • Lee, R., Middleton, D., Caldwell, K., Dearwent, S., Jones, S., Lewis, B., Monteilh, C., Mortensen, M. E., Nickle, R., Orloff, K., Reger, M., Risher, J., Schurz-Rogers, H., & Watters, M. (2009). A review of events that expose children to elemental mercury in the United States. Environmental Health Perspectives, 117, 871–878.

    CAS  Google Scholar 

  • Malandrino, M., Abollino, O., Giacomino, A., Aceto, M., & Mentasti, E. (2006). Adsorption of heavy metals on vermiculite: influence of pH and organic ligands. Journal of Colloid and Interface Science, 299, 537–546.

    Article  CAS  Google Scholar 

  • Mamba, B. B., Dlamini, N. P., Nyembe, D. W., & Mulaba-Bafubiandi, A. F. (2009). Metal adsorption capabilities of clinoptilolite and selected strains of bacteria from mine water. Physics and Chemistry of the Earth, 34, 830–840.

    Article  Google Scholar 

  • Ming, D. W., & Mumpton, F. A. (1995). Natural zeolites, '93. Occurrence, properties, use. Intern. Committee of Natural Zeolites, Brockport, New York.

  • Misaelides, P., Godelitsas, A., Filippidis, A., Charistos, D., & Anousis, I. (1995). Thorium and uranium uptake by natural zeolitic materials. Science of the Total Environment, 173(174), 237–246.

    Article  Google Scholar 

  • Myttenaere, C., Schell, W. R., Thiry, Y., Sombre, L., Ronneau, C., & van der Stegen de Schrieck, J. (1993). Modelling of Cs-137 cycling in forests: developments and research needed recent. Science of the Total Environment, 136, 77–91.

    Article  CAS  Google Scholar 

  • Osmanlioglu, A. E. (2006). Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. Journal of Hazardous Materials, 137, 332–335.

    Article  CAS  Google Scholar 

  • Panuccio, M. R., Sorgona, A., Rizzo, M., & Cacco, G. (2009). Cadmium adsorption on vermiculite, zeolite and pumice: batch experimental studies. Journal of Environmental Management, 90, 364–374.

    Article  CAS  Google Scholar 

  • Shatalov, V. V., Solov'ev, V. G., Shcheglov, A. Y., Penzin, R. A., Smirnov, D. I., Gelis, V. M., Milyutin, V. V., Kozlitin, E. A., & Svittsov, A. A. (2008). Tests of membrane-sorption decontamination of the reservoir cascade of the Techa River. Atomic Energy, 105, 357–366.

    Article  CAS  Google Scholar 

  • Sikalidis, C. A. (1991). Adsorption of U, Th, Ba and Cs by clay and synthetic minerals, selectivity and fixation of Cs. PhD thesis, Department of Chemical Engineering, Aristotle University of Thessaloniki, Greece.

  • Sikalidis, C. A., Misaelides, P., & Alexiades, C. A. (1988). Cesium selectivity and fixation by vermiculite in the presence of various competing cations. Environmental Pollution, 52, 67–79.

    Article  CAS  Google Scholar 

  • Zeng, G., Liang, J., Guo, S., Shi, L., Xiang, L., Li, X., & Du, C. (2009). Spatial analysis of human health risk associated with ingesting manganese in Huangxing Town, Middle China. Chemosphere, 77, 368–375.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Sikalidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikalidis, C., Filippidis, A., Papastergios, G. et al. Vermiculite in Fluidized Bed as Decontaminating Agent for Liquid Phases. Water Air Soil Pollut 223, 5637–5641 (2012). https://doi.org/10.1007/s11270-012-1303-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1303-5

Keywords

Navigation