Skip to main content
Log in

Adsorptive Removal of Pentachlorophenol by Anthracophyllum discolor in a Fixed-Bed Column Reactor

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study investigates pentachlorophenol (PCP) adsorption by the white-rot fungus Anthracophyllum discolor in a fixed-bed column reactor. PCP adsorption at different concentrations (20, 30, and 50 mg L−1) and pH values (5.0, 5.5, and 6.0) was determined and modeled using the Thomas model. Fourier transform infrared spectroscopy (FTIR) was used to identify functional groups of biomass that may participate in the interaction of PCP. The biosorption capacity of A. discolor was pH-dependent, and the PCP adsorbed increased with the decrease in the pH solution. Acid pH values of the influent gave an increase in saturation time in all PCP concentrations. By contrast, the increase in PCP concentration caused that the binding sites were filled quickly, resulting in a decrease in saturation time. The Thomas model was found suitable for describing the entire dynamic of the column with respect to the PCP concentration and pH of the solution. FTIR results showed that amines, carboxylates, alkanes, and C–O groups might participate in the PCP adsorption on the biomass surface. It was concluded that A. discolor biomass was a good adsorbent for PCP removal from influent with mainly acidic pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad, A. A., & Hameed, B. H. (2010). Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. Journal of Hazardous Materials, 175, 298–303. doi:10.1016/j.jhazmat.2009.10.003.

    Article  CAS  Google Scholar 

  • Aksu, Z., & Yener, J. (2001). A comparative adsorption/biosorption study of monochlorinated phenols onto various sorbents. Waste Management, 21, 695–702. doi:10.1016/S0956-053X(01)00006-X.

    Article  CAS  Google Scholar 

  • Arcand, Y., Hawari, J., & Guiot, S. (1995). Solubility of pentachlorophenol in aqueous solutions: The pH effect. Water Research, 29, 131–136. doi:10.1016/0043-1354(94)E0104-E.

    Article  CAS  Google Scholar 

  • Bayramoğlu, G., & Arica, M. Y. (2008). Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets. Chemical Engineering Journal, 143, 133–140. doi:10.1016/j.cej.2008.01.002.

    Article  Google Scholar 

  • Cea, M., Seaman, J. C., Jara, A., Mora, M. L., & Diez, M. C. (2005). Describing chlorophenol sorption on variable-charge soil using the triple-layer model. Journal of Colloid and Interface Science, 292, 171–178. doi:10.1016/j.jcis.2005.05.074.

    Article  CAS  Google Scholar 

  • Cea, M., Jorquera, M., Rubilar, O., Langer, H., Tortella, G., & Diez, M. C. (2010). Bioremediation of soil contaminated with pentachlorophenol by Anthracophyllum discolor and its effect on soil microbial community. Journal of Hazardous Materials, 181, 315–323. doi:10.1016/j.jhazmat.2010.05.013.

    Article  CAS  Google Scholar 

  • Denizli, A., Cihangir, N., Tüzmen, N., & Alsancak, G. (2005). Removal of chlorophenol from aquatic system using the dried and dead fungus Pleurotus sajor caju. Bioresource Technology, 96, 59–62. doi:10.1016/j.biortech.2003.11.029.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2003). Environmental pollution and disease: links between exposure and health outcomes. Available on U.S. EPA web site at http://www.epa.gov/indicators/roe/pdf/tdHealth4-1.pdf

  • Estevinho, B. N., Ribeiro, E., Alves, A., & Santos, L. (2008). A preliminary feasibility study for pentachlorophenol column sorption by almond shell residues. Chemical Engineering Journal, 136, 188–194. doi:10.1016/j.cej.2007.03.081.

    Article  CAS  Google Scholar 

  • Fomina, G., & Gadd, G. (2002). Influence of clay minerals on the morphology of fungal pellets. Mycological Research, 106, 107–117. doi:10.1017/S0953756201004786.

    Article  Google Scholar 

  • Leyva-Ramos, R., Bernal-Jacome, L. A., Mendoza-Barron, J., & Hernandez-Orta, M. M. G. (2009). Kinetic modeling of pentachlorophenol adsorption onto granular activated carbon. Taiwan Institute of Chemical Engineers, 40, 622–629. doi:10.1016/j.jtice.2009.05.006.

    Article  CAS  Google Scholar 

  • Li, X., Xu, Q., Han, G., Zhu, W., Chen, Z., He, X., & Tian, X. (2009). Equilibrium and kinetics studies of cooper(II) removal by three species of dead fungal biomasses. Journal of Hazardous Materials, 165, 469–474. doi:10.1016/j.hazamat.2008.10.013.

    Article  CAS  Google Scholar 

  • Lin, Y., Liao, W., & Chen, S. (2008). Study of pellet formation of filamentous fungi Rhizopus oryzae using a multiple logistic regression model. Biotechnology and Bioengineering, 99, 117–128. doi:10.1002/bit.21531.

    Article  Google Scholar 

  • Mathialagan, T., & Viraraghavan, T. (2009). Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass. Bioresource Technology, 100, 549–558. doi:10.1016/j.biortech.2008.06.054.

    Article  CAS  Google Scholar 

  • Neilson, A. H., Allard, S. A., Hynning, P. A., Remberger, M., & Viktor, T. (1990). The environmental fate of chlorophenolic constituents of bleachery effluents. Tappi Journal, 73, 239–247.

    CAS  Google Scholar 

  • Pang, C., Liu, Y., Cao, X., Li, M., Huang, G., Hua, R., Wang, C., Liu, Y., & An, X. (2011). Biosorption of uranium(VI) from aqueous solution by dead fungal biomass of Penicillium citrinum. Chemical Engineering Journal, 170, 1–6. doi:10.1016/j.cej.2010.10.068.

    Article  CAS  Google Scholar 

  • Pasparakis, G., & Bouropoulos, N. (2006). Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. International Journal of Pharmaceutics, 323, 34–42. doi:10.1016/j.ijpharm.2006.05.054.

    Article  CAS  Google Scholar 

  • Radhika, M., & Palanivelu, K. (2006). Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent—Kinetics and isotherm analysis. Journal Hazardous Material, B138, 116–124. doi:10.1016/j.jhazmat.2006.05.045.

    Article  Google Scholar 

  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255. doi:10.1016/j.jhazmat.2006.05.045.

    Article  CAS  Google Scholar 

  • Rubilar, O., Feijoo, G., Diez, C., Lu-Chau, T., Moreira, M. T., & Lema, J. (2007). Biodegradation of pentachlorophenol in soil slurry cultures by Bjerkandera adusta and Anthracophyllum discolor. Industrial and Engineering Chemistry Research, 46, 6744–675. doi:10.1021/ie061678b.

    Article  CAS  Google Scholar 

  • Tanjore, S., & Viraraghavan, T. (1994). Pentachlorophenol-water pollution impacts and removal technologies. International Journal of Environmental Studies, 45, 155–164. doi:10.1007/s11270-007-9384-2.

    Article  CAS  Google Scholar 

  • Taylor, T. R., Tucker, T., & Whalen, M. M. (2005). Persistent inhibition of human natural killer cell function by ziram and pentachlorophenol. Environmental Toxicology, 20, 418–424. doi:10.1002/tox.20127.

    Article  CAS  Google Scholar 

  • Thomas, H. C. (1944). Heterogeneous ion exchange in a flowing system. Journal of the American Chemical Society, 66, 1664–1666. doi:10.1021/ja01238a017.

    Article  CAS  Google Scholar 

  • Tortella, G. R., Rubilar, O., Gianfreda, L., Valenzuela, E., & Diez, M. C. (2008). Enzymatic characterization of Chilean native wood-rotting fungi for potential use in the bioremediation of polluted environments with chlorophenols. World Journal of Microbiology and Biotechnology, 24, 2805–2818. doi:10.1007/s11274-008-9810-7.

    Article  CAS  Google Scholar 

  • Valentin, L., Lu-Chau, T. A., Lopez, C., Feijoo, G., Moreira, M. T., & Lema, J. M. (2007). Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Process Biochemistry, 42, 641–648. doi:10.1021/ja01238a017.

    Article  CAS  Google Scholar 

  • Wu, J., & Yu, H. (2006). Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: Isotherms, kinetics and thermodynamics. Journal Hazardous Material, B137, 498–508. doi:10.1016/j.jhazmat.2006.02.026.

    Article  Google Scholar 

  • Wu, J., & Yu, H. (2008). Biosorption of 2,4-dichlorophenol from aqueous solution by immobilized Phanerochaete chrysosporium biomass in a fixed-bed column. Chemical Engineering Journal, 138, 128–135. doi:10.1016/j.cej.2007.05.051.

    Article  CAS  Google Scholar 

  • Žnidaršic, P., & Pavko, A. (2001). The morphology of filamentous fungi in submerged cultivations as a bioprocess parameter. Food Technology and Biotechnology, 39, 237–252. doi:10.1016/j.cej.2007.05.051.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for funding received from FONDECYT project no. 11090255 and partially from FONDECYT project no. 1090678.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Rubilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubilar, O., Tortella, G.R., Cuevas, R. et al. Adsorptive Removal of Pentachlorophenol by Anthracophyllum discolor in a Fixed-Bed Column Reactor. Water Air Soil Pollut 223, 2463–2472 (2012). https://doi.org/10.1007/s11270-011-1039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-1039-7

Keywords

Navigation