Skip to main content
Log in

Fluorescence Analysis of Natural Organic Matter Fractionated by Ultrafiltration: Contrasting Between Urban-Impacted Water, and Radio-Contaminated Water from a Near-Pristine Site

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Aqueous natural organic matter (NOM) impacted by two contrasting human impacts was analyzed using by multiresponse fluorescence, decoupled with the resolution routine PARAFAC. The first site is Chalk River, Ontario, Canada, near a pit formerly used to dispose low-level wastes. The second site is the Grand River in Cambridge, south-central Ontario, which is impacted by urban activities and agriculture. Our analysis included raw water, plus fractions from ultrafiltration and solid-phase extraction (SPE). The fluorescence spectra of the NOM, resolved with PARAFAC, showed three common features: humic-like components, at excitation/emission wavelengths 325–350/450–475 nm, fulvic-like components at 325/380–420 nm and protein-like components, at 275/300 nm. Ultrafiltration revealed that most of the NOM comprised fine material below 5,000 Da cut-off (<4% of the total) in the urban-impacted sites and the clean site at Chalk River, but the colloidal fraction (larger than 5,000 Da) was substantially higher in the contaminated water, with ∼18–26% of the total. The protein-like components in the contaminated Chalk River water were affected by ultrafiltration, but less so in the clean Chalk River sample and the urban-impacted waters. SPE preferentially removed the protein-like component in the contaminated Chalk River water (typically 89–95% signal decrease), but had a limited effect on humic- and fulvic-like components elsewhere. In conclusion, multiresponse fluorescence provided new information on the NOM quality from two contrasting sites, aided by ultrafiltration and SPE. These results are consistent with the in situ production of NOM in the Chalk River contaminated site, and natural production at the other sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. One Dalton unit is equivalent to one atomic mass unit (amu). It is used in ultrafiltration to determine the approximate size of macromolecules for which a rigorous molecular mass is inappropriate.

  2. The term 5 kDa stands for 5,000 Daltons, and NWCO stands for Nominal Weight Cut-Off. NWCO is implied after the Da term and it will be omitted henceforth.

References

  • Agbekodo, K. M., Croué, J.-P., Dard, S., & Legube, B. (1996). Analyse par HPLC et GC/SM des constituants du carbone organique dissous (COD), du COD biodégradable (CODB) et des composés organo-halogénés (TOX) d'un perméat de nanofiltration. Revue des Sciences de l'Eau, 4, 535–555.

    Google Scholar 

  • Ahmad, U. K., Ujang, Z., Yusop, Z., & Fong, T. L. (2002). Fluorescence technique for the characterization of natural organic matter in river water. Water Science and Technology, 46, 117–125.

    CAS  Google Scholar 

  • Andersen, C. M., & Bro, R. (2003). Practical aspects of PARAFAC modeling of fluorescence excitation - emission data. J. Chemometrics 17, 200–215.

    Google Scholar 

  • Baker, A. (2001). Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers. Environmental Science & Technology, 35, 948–953.

    Article  CAS  Google Scholar 

  • Beckett, R., Jue, Z., & Giddings, J. C. (1987). Determination of molecular weight distributions of fulvic and humic acids using flow field-flow fractionation. Environmental Science & Technology, 21, 289–295.

    Article  CAS  Google Scholar 

  • Boehme, J., & Wells, M. (2006). Fluorescence variability of marine and terrestrial colloids: examining size fractions of chromophoric dissolved organic matter in the Damariscotta River estuary. Marine Chemistry, 101, 95–103.

    Article  CAS  Google Scholar 

  • Bouby, M., Geckeis, H., & Geyer, F. W. (2008). Application of asymmetric flow field-flow fractionation (AsFIFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles. Analytical and Bioanalytical Chemistry, 392, 1447–1457.

    Article  CAS  Google Scholar 

  • Burstein, E. A., Vedenkina, N. S., & Ivkova, M. N. (1973). Fluorescence and the location of tryptophan residues in protein molecules. Photochemistry and Photobiology, 18, 263–279.

    Article  CAS  Google Scholar 

  • Caron, F., & Mankarios, G. (2004). Pre-assessment of the speciation of 60Co, 125Sb, 137Cs and 241Am in a contaminated aquifer. Journal of Environmental Radioactivity, 77, 29–46.

    Article  CAS  Google Scholar 

  • Caron, F., Laurin, S., Simister, C., Jacques, C., & Mankarios, G. (2007). Potential use of ultrafiltration for groundwater remediation and aqueous speciation of 60Co and 137Cs from a contaminated area. Water, Air, and Soil Pollution, 178, 121–130.

    Article  CAS  Google Scholar 

  • Chapman, P. J., Clark, J. M., Reynolds, B. & Andamson, J. K. (2008). The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis. Environmental Pollution, 151, 110–120.

    Google Scholar 

  • Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence excitation–emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 37, 5701–5710.

    Article  CAS  Google Scholar 

  • Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51, 325–346.

    Article  CAS  Google Scholar 

  • Cooper, E. L., & McHugh, J. O. (1983). Migration of radiocontaminants in a forested wetland on the Canadian Shield: nuclide speciation and arboreal uptake. Science of the Total Environment, 28, 215–230.

    Article  CAS  Google Scholar 

  • Curtis, P. J., & Schindler, D. W. (1997). Hydrologic control of dissolved organic matter in low-order Precambrian Shield lakes. Biogeochemistry, 36, 125–138.

    Article  Google Scholar 

  • Frimmel, F. H. (1998). Characterization of natural organic matter as major constituents in aquatic systems. Journal of Contaminant Hydrology, 35, 201–216.

    Article  CAS  Google Scholar 

  • Galvez, F., Donini, A., Playle, R. C., Smith, D. S., O'Konnell, M. J., & Wood, C. M. (2008). A matter of potential concern: natural organic matter alters the electrical properties of fish gills. Environmental Science & Technology, 42, 9385–9390.

    Article  CAS  Google Scholar 

  • Geckeis, H., Ngo Mahn, Th, Bouby, M., & Kim, J. I. (2003). Aquatic colloids relevant to radionuclide migration: characterization by size fractionation and ICP-mass spectrometric detection. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 217, 101–108.

    Article  CAS  Google Scholar 

  • Hall, G. J., & Kenny, J. E. (2007). Estuarine water classification using EEM spectroscopy and PARAFAC-SIMCA. Analytica Chimica Acta, 581, 118–124.

    Article  CAS  Google Scholar 

  • Holbrook, R. D., Yen, J. H., & Grizzard, T. J. (2006). Characterizing natural organic material from the Occoquan Watershed (Northern Virginia, US) using fluorescence spectroscopy and PARAFAC. The Science of the Total Environment, 361, 249–266.

    Article  CAS  Google Scholar 

  • Jackson, R. E., & Inch, K. J. (1980). Hydrogeochemical processes affecting the migration of radionuclides in a fluvial sand aquifer at the Chalk River Nuclear Laboratories. Inland Waters Directorate, NHRI Paper No 7, Scientific Series No. 104, Ottawa, Ont.

  • Kang, K.-H., Shin, H. S., & Park, H. (2002). Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Research, 36, 4023–4032.

    Article  CAS  Google Scholar 

  • Killey, R. W. D., McHugh, J. O., Champ, D. R., Cooper, E. L., & Young, J. L. (1984). Subsurface Cobalt-60 migration from a low-level waste disposal site. Environmental Science & Technology, 18, 148–157.

    Article  CAS  Google Scholar 

  • Kowalczuk, P., Stron-Egiert, J., Cooper, W. J., Whitehead, R. F., & Durako, M. J. (2005). Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy. Marine Chemistry, 96, 273–292.

    Article  CAS  Google Scholar 

  • Leenheer, J. A. (1981). Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environmental Science & Technology, 15, 578–587.

    Article  CAS  Google Scholar 

  • Leenheer, J. A., & Croué, J.-P. (2003). Characterizing aquatic dissolved organic matter. Environmental Science & Technology, 37, 18A–26A.

    Article  CAS  Google Scholar 

  • Leonard, K. S., Harvey, B. R., Woodhead, R. J., Brooks, T., & McCubbin, D. (1994). Assessment of an ultrafiltration technique for the fractionation of radionuclides associated with humic material. Journal of Radioanalytical and Nuclear Chemistry, 181, 309–320.

    Article  CAS  Google Scholar 

  • Litaor, M. I., & Thurman, E. M. (1988). Acid neutralizing processes in an alpine watershed front range, Colorado, U.S.A.—1: buffering capacity of dissolved organic carbon in soil solutions. Applied Geochemistry, 3, 645–652.

    Article  CAS  Google Scholar 

  • Liu, R., Lead, J. R., & Baker, A. (2007). Fluorescence characterization of cross flow ultrafiltration derived freshwater colloidal and dissolved organic matter. Chemosphere, 68, 1304–1311.

    Article  CAS  Google Scholar 

  • Ludwig, U. K., Grischek, T., Neitzel, P., & Nestler, W. (1997). Ultrafiltration: a technique for determining the molecular-mass distribution of group parameters of organic pollutants in natural waters. Journal of Chromatography. A, 763, 315–321.

    Article  CAS  Google Scholar 

  • Marley, N. A., Gaffney, J. S., Orlandini, K. A., & Cunningham, M. M. (1993). Evidence for radionuclide transport and mobilization in a shallow, sandy aquifer. Environmental Science & Technology, 27, 2456–2461.

    Article  CAS  Google Scholar 

  • Morel, F. M. M., & Hering, J. G. (1993). Principles and applications of aquatic chemistry. New York: Wiley-Interscience.

    Google Scholar 

  • Mounier, S., Patel, N., Quilici, L., Benaim, J. Y., & Benamou, C. (1999). Fluorescence 3D de la matière organique dissoute du fleuve Amazone (Three-dimensional fluorescence of the dissolved organic carbon in the Amazon river). Water Research, 33, 1523–1533.

    Article  CAS  Google Scholar 

  • Murphy, K. R., Stedmon, C. A., Waite, T. D., & Ruiz, G. M. (2008). Distinguishing between terrestrial and autochtonous organic matter sources in marine enfironments using fluorescence spectroscopy. Marine Chemistry, 108, 40–58.

    Article  CAS  Google Scholar 

  • Nikolaou, A. D., & Lekkas, T. D. (2001). The role of natural organic matter during formation of chlorination by-products: a review. Acta Hydrochimica et Hydrobiologica, 29, 63–77.

    Article  CAS  Google Scholar 

  • Penrose, W. R., Polzer, W. L., Essington, E. H., Nelson, D. M., & Orlandini, K. A. (1990). Mobility of Plutonium and Americium through a shallow aquifer in a semiarid region. Environmental Science & Technology, 24, 228–234.

    Article  CAS  Google Scholar 

  • Presant, E. W., & Wicklund, R. E. (1971). The soils of Waterloo County. Research Branch, Canada Department of Agriculture, Department of Soil Science, University of Guelph, and the Ontario Department of Agriculture and food, Report No. 44, of the Ontario Soil Survey Ottawa.

  • Qiao, P., & Farrell, A. P. (2002). Influence of dissolved humic acid on hydrophobic chemical uptake in juvenile rainobow trout. Toxicology & Pharmacology, 133, 575–585.

    CAS  Google Scholar 

  • Reszat, T. N., & Hendry, M. J. (2005). Characterizing dissolved organic carbon using asymmetrical flow field-flow fractionation with on-line UV and DOC detection. Analytical Chemistry, 77, 4194–4200.

    Article  CAS  Google Scholar 

  • Scamehorn, J. F., Christian, S. D., El-Sayed, D. A., & Uchiyama, H. (1994). Removal of divalent cations and their mixtures from aqueous steams using micelle-enhanced ultrafiltration. Separation Science and Technology, 29, 809–830.

    Article  CAS  Google Scholar 

  • Schafer, A. I., Mauch, R., Waite, T. D., & Fane, A. G. (2002). Charge effects in the fractionation of natural organics using ultrafiltration. Environmental Science & Technology, 36, 2572–2580.

    Article  Google Scholar 

  • Schmitt, D., Saravia, F., Frimmel, F. H., & Schuessler, W. (2003). NOM-facilitated transport of metal ions in aquifers: importance of complex-dissociation kinetics and colloid formation. Water Research, 37, 3541–3550.

    Article  CAS  Google Scholar 

  • Sihombing, R., Greenwood, P. F., Wilson, M. A., & Hanna, J. V. (1996). Composition of size exclusion fractions of swamp water humic and fulvic acids as measured by solid state NMR and pyrolysis-gas chromatography-mass spectrometry. Organic Geochemistry, 24, 859–873.

    Article  CAS  Google Scholar 

  • Smith, D. S., & Kramer, J. R. (1999). Fluorescence analysis for multi-site aluminum binding to natural organic matter. Environment International, 25, 295–306.

    Article  CAS  Google Scholar 

  • Smith, D. S., & Kramer, J. R. (2000). Multisite metal binding to fulvic acid determined using multiresponse fluorescence. Analytica Chimica Acta, 416, 211–220.

    Article  CAS  Google Scholar 

  • Stedmon, C. A., & Markager, S. (2005). Resolving the variability in dissolved organic matter fluorescence in a termperate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography, 50, 686–697.

    Article  CAS  Google Scholar 

  • Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82, 239–254.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry (3rd ed.). New York: Wiley-Interscience.

    Google Scholar 

  • Vigneault, B., Percot, A., Lafleur, M., & Campbell, P. G. C. (2000). Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances. Environmental Science & Technology, 34, 3907–3913.

    Article  CAS  Google Scholar 

  • Weis, M., Abbt-Braun, G., & Frimmel, F. H. (1989). Humic-like substances from landfill leachates—characterization and comparison with terrestrial and aquatic humic substances. Science of the Total Environment, 81\82, 343–352.

    Article  Google Scholar 

  • Wise, B. M., Gallagher, N. B., Bro, R., Shaver, J. M., Windig, W., & Koch, R. S. (2006). PLS Toobox Version 4.0 for use with Matab™. Eigenvector Research Inc. Wenatchee, WA, USA.

Download references

Acknowledgments

The authors wish to thank Atomic Energy of Canada Limited for site access, especially D. Killey and S. Welch for sampling support. P. Guerin and S. Smith (Laurentian University) have also helped for the field sampling and sample processing. The authors thank S. Siemann (Laurentian University) for insights on protein fluorescence. F. Caron is particularly grateful to D.S. Smith for his support during the first author’s sabbatical, A. Szabo (Wilfrid Laurier University) for instrument use, S. DePalma (Chemistry Department) and other support by Wilfrid Laurier University. Financial support by Laurentian University came from the Faculty’s Research Funds (LURF), Professional Allowance, and Work Study Program. Subsidy by the Ontario Ministry of Northern Development and Mines (NMDM) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Caron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caron, F., Smith, D.S. Fluorescence Analysis of Natural Organic Matter Fractionated by Ultrafiltration: Contrasting Between Urban-Impacted Water, and Radio-Contaminated Water from a Near-Pristine Site. Water Air Soil Pollut 214, 471–490 (2011). https://doi.org/10.1007/s11270-010-0439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0439-4

Keywords

Navigation