Skip to main content

Advertisement

Log in

Phosphorus Fractionation in Sediment Cores Collected In 2005 Before and After Onset of an Aphanizomenon flos-aquae Bloom in Upper Klamath Lake, OR, USA

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

We tested the hypothesis that there would be measurable losses of phosphorus (P) from surficial sediments of Upper Klamath Lake (UKL), Oregon, if sediments were a source of P during an algal bloom. We compared concentrations of total and forms of P at various depths in cores collected before and after the onset of a large Aphanizomenon flos-aquae bloom. Concentrations of inorganic P were determined in extraction solutions of MgCl2 (1 M, pH 8), citrate-dithionite-bicarbonate, and 1 M HCl. Sediments below 2 cm were dominated by residual P which is defined as total P minus inorganic P. During the study period, data from the top 2-cm of sediment indicated (a) significant decrease in total P concentration, primarily associated with iron oxyhydroxides at one site, and (b) significant increase in total P concentration associated with residual P at a second site. Data from two other sites indicated no net changes in concentrations of total P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, L. D., & Delaney, M. L. (1999). Sequential Extraction and Analysis of Phosphorus in Marine Sediments: Streamlining of the SEDEX Procedure. Limnology and Oceanography, 45, 509–515.

    Google Scholar 

  • Andersson, G., Granéli, W., & Stenson, J. (1988). The influence of animals on phosphorus cycling in lake ecosystems. Hydrobiologia, 170, 267–284.

    CAS  Google Scholar 

  • Andrieux, F. & Aminot, A. (1996). Concept and determination of exchangeable phosphate in aquatic sediments. Water Research, 30, 2805–2811.

    Article  Google Scholar 

  • Andrieux-Loyer, F., Philippon, X., Bally, G., Kérouel, R., Youenou, A., & Le Grand, J. (2008). Phosphorus dynamics and bioavailability in sediments of the Penzé Estuary (NW France): in relation to annual P-fluxes and occurrences of Alexandrium Minutum. Biogeochemistry, 88, 213–231. doi:10.1007/s10533-008-9199-2.

    Article  CAS  Google Scholar 

  • Aspila, K. I., Agemian, H., & Chau, A. S. Y. (1976). A semi-automatic method for the determination of inorganic, organic and total phosphate in sediments. Analyst (London), 101, 87–197. doi:10.1039/an9760100187.

    Article  Google Scholar 

  • Bradbury, J. P., Colman, S. M., & Dean, W. E. (2004a). Limnological and climatic environments at Upper Klamath Lake, Oregon during the past 45 000 years. Journal of Paleolimnology, 31, 167–188. doi:10.1023/B:JOPL.0000019232.74649.02.

    Article  Google Scholar 

  • Bradbury, J. P., Colman, S. M., & Reynolds, R. L. (2004b). The history of recent limnological changes and human impact on Upper Klamath Lake. Oregon. Journal of Paleolimnology, 31, 151–165. doi:10.1023/B:JOPL.0000019233.12287.18.

    Article  Google Scholar 

  • Brantley, S. L., Liermann, L. J., Guynn, R. L., Anbar, A., Icopini, G. A., & Barling, J. (2004). Fe isotopic fractionation during mineral dissolution with and without bacteria. Geochimica et Cosmochimica Acta, 68, 3189–3204. doi:10.1016/j.gca.2004.01.023.

    Article  CAS  Google Scholar 

  • Brunberg, A. -K., Blomqvist, P., & Rydin, E. (2002). Contrasting ontogeny among ephemeral hardwater lakes as revealed by sediment P-fractionation. Archiv fuer Hydrobiologie, 153, 491–502.

    CAS  Google Scholar 

  • Brunberg, A. -K., & Boström, B. (1992). Coupling between benthic biomass of Microcystis and phosphorus release from the sediments of a highly eutrophic lake. Hydrobiologia, 235/236, 375–385. doi:10.1007/BF00026227.

    Article  Google Scholar 

  • Cade-Menum, B. J., & Preston, C. M. (1996). A comparison of soil extraction procedures for 31P NMR spectroscopy. Soil Science, 161, 770–785. doi:10.1097/00010694-199611000-00006.

    Article  Google Scholar 

  • Cade-Menum, B. J., Navaratnam, J. A., & Walbridge, M. R. (2006). Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy. Environmental Science & Technology, 40, 7874–7880. doi:10.1021/es061843e.

    Article  CAS  Google Scholar 

  • Carman, R., Edlund, G., & Damberg, C. (2000). Distribution of organic and inorganic phosphorus compounds in marine and lacustrine sediments: a 31P NMR study. Chemical Geology, 163, 101–114. doi:10.1016/S0009-2541(99)00098-4.

    Article  CAS  Google Scholar 

  • Colman, S. M., Bradbury, J. P., McGeehin, C. W., Holmes, C. W., Edginton, D., & Sarna-Wojcicki, A. M. (2004b). Chronology of sediment deposition in Upper Klamath Lake, Oregon. Journal of Paleolimnology, 31, 139–149. doi:10.1023/B:JOPL.0000019234.05899.ea.

    Article  Google Scholar 

  • Colman, S. M., Bradbury, J. P., & Rosenbaum, G. (2004a). Paleolimnology and paleoclimate studies in Upper Klamath Lake, Oregon. Journal of Paleolimnology, 31, 129–138. doi:10.1023/B:JOPL.0000019235.72107.92.

    Article  Google Scholar 

  • Eilers, J. M., Bernert, J. A., Gubala, C. P., Whiting, M. C., Engstrom, D. R., & Charles, D. F. (1996). Recent paleolimnology of Devils Lake, Oregon. Northwest Science, 70, 13–27.

    CAS  Google Scholar 

  • Filippelli, G. M., Souch, C., Menounos, B., Slater-Atwater, S., Jull, A. J. T., & Slaymaker, O. (2006). Alpine lake sediment records of the impact of glaciation and climate change on the biogeochemical cycling of soil nutrients. Quaternary Research, 66, 158–166. doi:10.1016/j.yqres.2006.03.009.

    Article  CAS  Google Scholar 

  • Fukuhara, H., & Sakamota, M. (1987). Enhancement of inorganic nitrogen and phosphate release from sediment by tubificid worms and chironomid larvae. Oikos, 48, 312–320. doi:10.2307/3565519.

    Article  Google Scholar 

  • Harrison, M. J., Pacha, R. E., & Morita, R. Y. (1972). Solubilization of inorganic phosphates by bacteria isolated from Klamath Lake sediment. Limnology and Oceanography, 17, 50–57.

    CAS  Google Scholar 

  • Hieltjes, A. H. M., & Lijklema, L. (1980). Fractionation of inorganic phosphates in calcareous sediments. Journal of Environmental Quality, 9, 405–407.

    Article  CAS  Google Scholar 

  • Hoilman, G. R., Lindenberg, M. K., & Wood, T. M.(2008). Water quality conditions in Upper Klamath and Agency Lakes, Oregon, 2005. U.S. Geological Survey Scientific Investigations Report 2008-5026.

  • Hupfer, M., & Rübe, B. (2004). Origin and diagenesis of polyphosphate in lake sediments: A 31P-NMR study. Limnology and Oceanography, 49, 1–10.

    Article  CAS  Google Scholar 

  • Klamath Consulting Service, Inc.(1983) EPA 314 clean lakes program: phase I diagnostic/feasibility project: Upper Klamath Lake, Oregon. (pdf) http://klamathwaterlib.oit.edu/inside/How%20ti%20cute.pdf. Accessed 6 February 2009.

  • Kleeberg, A. (2002). Phosphorus sedimentation in seasonal anoxic Lake Scharmützel, NE Germany. Hydrobiologia, 472, 53–65. doi:10.1023/A:1016356714276.

    Article  CAS  Google Scholar 

  • Koopmans, G. F., Chardon, W. J., Dolfing, J., Oenema, O., van der Meer, P., & van Riemsdijk, W. H. (2003). Wet chemical and phosphorus-31 nuclear magnetic resonance analysis of phosphorus speciation in a sandy soil receiving long-term fertilizer or animal manure applications. Journal of Environmental Quality, 32, 287–295.

    CAS  Google Scholar 

  • Kuwabara, J. S., Lynch, D. D., Topping, B. R., Murphy, F., Carter, J. L., Simon, N. S., Parchaso, F., Wood, T.M., Lindenberg, M.K., Wiese, K., & Avanzino, R.(2007). Quantifying the benthic source of nutrients to the water column of Upper Klamath Lake, Oregon. U.S. Geological Survey Open-File Report 2007–1276.

  • Laenen, A., & LeTourneau, A. P. (1996). Upper Klamath Basin Nutrient-Loading Study-Estimate of wind-induced resuspension of bed sediment during periods of low lake elevation. U.S.Geological Survey Open-File Report 95–414

  • Lennox, L. J. (1984). Lough Ennell: laboratory studies on sediment phosphorus release under varying mixing, aerobic and anaerobic conditions. Freshwater Biology, 14, 183–187. doi:10.1111/j.1365-2427.1984.tb00032.x.

    Article  CAS  Google Scholar 

  • Mortimer, C. H. (1972). Chemical exchanges between sediments and water in the Great-Lakes – Speculations on probable regulatory mechanisms. Limnology and Oceanography, 16, 387–404.

    Article  Google Scholar 

  • National Research Council (2004). Endangered and threatened fishes in the Klamath River Basin: Causes of decline and strategies for recovery Committee on Endangered and Threatened Fishes in the Klamath River Basin, National Research Council, Executive Summary by the National Academies. Washington, D.C.: National Academies Press.

    Google Scholar 

  • Oregon Department of Environmental Quality (2002). Upper Klamath Lake Drainage Total Maximum Daily Load (TMDL) and Water Quality Management Plan (WQMP) p. 586. Portland, OR, 97204: State of Oregon Department of Environmental Quality.

    Google Scholar 

  • Ostrofsky, M. L. (1987). Phosphorus species in the surficial sediments of lakes of eastern North America. Canadian Journal of Fisheries and Aquatic Sciences, 44, 960–966. doi:10.1139/f87-114.

    Article  CAS  Google Scholar 

  • Rand, M. C., Greenberg, A. E., & Taras, M. J.(1976). Standard methods for the Examination of Water and Wastewater, 14th edition, (pp. 466–483) American Public Health Association American Water Works Association and Water Pollution Control Federation, Washington, D.C.

  • Reynolds, R. L., Rosenbaum, J. G., Rapp, J., Kerwin, W., Bradbury, J. P., Colman, S., & Adam, D. (2004). Record of late Pleistocene glaciation and deglaciation in the southern Cascade Range. I. Petrological evidence from lacustrine sediment in Upper Klamath Lake, southern Oregon. Journal of Paleolimnology, 31, 217–233. doi:10.1023/B:JOPL.0000019230.42575.03.

    Article  Google Scholar 

  • Robert, M., & Chenu, C. (1992). Interactions between soil minerals and microorganisms. In G. Stotzky, & J. -M. Bollag (Eds.), Soil Biochemistry (vol. 7, pp. 307–404). New York: Marcel Dekker.

    Google Scholar 

  • Ruban, V. J., López-Sánchez, F., Pardo, P., Rauret, G., Muntau, H., & Quevauviller, P. (1999). Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. Journal of Environmental Monitoring, 1, 51–56. doi:10.1039/a807778i.

    Article  CAS  Google Scholar 

  • Ruttenberg, K. C. (1992). Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 37, 1460–1482.

    CAS  Google Scholar 

  • Schwertmann, U., & Cornell, R. M. (2000). Iron Oxides in the Laboratory (2nd ed.). New York, NY: Wiley-VCH.

    Google Scholar 

  • Simon, N. S., Bricker, O. P., Newell, W., McCoy, R., & Morawe, R. (2005). The distribution of phosphorus in Popes Creek, VA, and in the Pocomoke River, MD: Two watersheds with different land management practices in the Chesapeake Bay Basin. Water, Air, and Soil Pollution, 164, 189–204. doi:10.1007/s11270-005-3024-5.

    Article  CAS  Google Scholar 

  • Spyridakis, D. E., & Welch, E. B.(1973) Nutrient budgets in the lakes of the Cedar River watershed. Internal report 85 in 1972 Annual Report. Coniferous Forest Biome, College of Forest Resources, University of Washington, Seattle, WA 98175, 19 pp.

  • Torrent, J., Schwertmann, U., & Barron, V. (1992). Fast and slow phosphate sorption by goethite-rich natural materials. Clays and Clay Minerals, 40, 14–21. doi:10.1346/CCMN.1992.0400103.

    Article  CAS  Google Scholar 

  • Turner, B. L., Mahieu, N., & Condron, L. M. (2003). Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Science Society of America Journal, 67, 497–510.

    CAS  Google Scholar 

  • Walker, W. W. (2001). Development of phosphorus TMDL for Upper Klamath Lake, Oregon, Report prepared for Oregon Department of Environmental Quality, Portland, OR, USA.

  • Wood, T. M., Hoilman, G. R., & Lindenberg, M. K.(2006). Water-quality conditions in Upper Klamath Lake, Oregon, 2002–2004. U. S. Geological Survey Scientific Investigations Report 2006–5209.

Download references

Acknowledgements

The authors greatly appreciate the excellent support of the U.S. Geological Survey Klamath Falls Field Office field crew and the helpful suggestions of James Kuwabara and Thomas Kraemer, both from the U.S. Geological Survey.

The authors gratefully acknowledge the financial support of the U.S. Bureau of Reclamation for part of the project. s.d.g. Any use of trade, product, or firm names in this report is for identification purposes only and does not constitute endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy S. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, N.S., Lynch, D. & Gallaher, T.N. Phosphorus Fractionation in Sediment Cores Collected In 2005 Before and After Onset of an Aphanizomenon flos-aquae Bloom in Upper Klamath Lake, OR, USA. Water Air Soil Pollut 204, 139–153 (2009). https://doi.org/10.1007/s11270-009-0033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0033-9

Keywords

Navigation