Skip to main content
Log in

Enhanced Adsorption of Metal Ions Onto Polyethyleneimine-Impregnated Palm Shell Activated Carbon: Equilibrium Studies

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, palm shell activated carbon was impregnated with polyethyleneimine (PEI) and the effect of impregnation on batch adsorption of Ni2+, Cd2+or Pb2+ as well as the equilibrium behavior of adsorption of metal ions on PEI-impregnated AC were investigated. PEI impregnation evidently increased the single metal adsorption capacities of Ni2+ or Cd2+except for Pb2+, where its adsorption capacities were reduced by 16.67% and 19.55% for initial solution pH of 3 and 5 respectively. This suggested that PEI-impregnated AC could be used for selective separation of Pb2+ ions from other metal ions. The adsorption data of all the metal ions on both virgin and PEI-impregnated AC for both initial solution pH of 3 and 5 generally fitted the Langmuir and Redlich-Peterson isotherms considerably better than the Freundlich isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Redlich–Peterson constant

B :

Redlich–Peterson constant

C e :

equilibrium concentration, mg/l

C 0 :

initial concentration, mg/l

G :

Redlich–Peterson constant

K :

Langmuir constant.

K F :

Freundlich constant

M :

weight of AC, g.

pHPZC :

pH of point of zero charge

q e :

equilibrium adsorption capacity, mg/g.

n :

Freundlich constant

q m :

adsorbate adsorbed per unit mass of adsorbent (monolayer adsorption), mg/g.

R 2 :

correlation coefficient

V :

volume, l.

References

  • Ali, U. F. M., Aroua, M. K., & Daud, W. M. A. W. (2004). Modification of a granular palm shell based activated carbon by acid pre-treatment for enhancement of copper adsorption. Paper presented at the Third Technical Postgraduate Symposium, Kuala Lumpur, Malaysia, December.

  • Brown, P., Jefcoat, I. A., Parrish, D., Gill, S., & Graham, E. (2000). Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution. Advances in Environmental Science, 4, 19–29.

    Article  Google Scholar 

  • Chingombe, P., Saha, B., & Wakeman, R. J. (2006). Effect of surface modification of an engineered activated carbon on the sorption of 2,4-dichlorophenoxy acetic acid and benazolin from water. Journal of Colloid and Interface Science, 297, 434–442.

    Article  CAS  Google Scholar 

  • Dastgheib, S. A., & Rockstraw, D. A. (2002). A model for the adsorption of single metal ion solutes in aqueous solution onto activated carbon produced from pecan shells. Carbon, 40, 1843–1851.

    Article  CAS  Google Scholar 

  • Daud, W. M. A. W., Ali, W. S. W., & Sulaiman, M. Z. (2002). Effect of activation temperature on pore development in activated carbon produced from palm shell. Journal of Chemical Technology and Biotechnology, 78, 1–5.

    Article  Google Scholar 

  • Demirbas, E., Kobya, M., Öncel, S., & Sencan, S. (2002). Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies. Bioresource Technology, 84, 291–293.

    Article  CAS  Google Scholar 

  • Department of Environment (DOE) (2002). Malaysian environmental quality report. ISSN 0127-6433.

  • Freundlich, H. (1906). Adsorption in solution. Physical Chemistry Society, 40, 1361–1368.

    Google Scholar 

  • Gustafsson, J. P. (2006). VMINTEQ 2.50 software manual. Retrieved January 2006 from http://www.lwr.kth.se/English/OurSoftware/vminteq.

  • Hawari, A. H., & Mulligan, C. N. (2006). Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresource Technology, 97, 692–700.

    Article  CAS  Google Scholar 

  • Hussein, M. Z., Tarmizi, R. S. H., Zainal, Z., Ibrahim, R., & Badri, M. (1996). Preparation and characterization of active carbons from oil palm shells. Carbon, 34, 1447–1454.

    Article  CAS  Google Scholar 

  • Issabayeva, G. (2005). Adsorption and electroreduction of copper and lead ions on palm shell activated carbon. Dissertation, University of Malaya.

  • Issabayeva, G., Aroua, M. K., & Sulaiman, N. M. N. (2006). removal of lead from aqueous solutions on palm shell activated carbon. Bioresource Technology, 97, 2350–2355.

    CAS  Google Scholar 

  • Jia, Y. F., & Thomas, K. M. (2000). Adsorption of cadmium ions on oxygen surface sites in activated carbon. Langmuir, 16, 1114–1122.

    Article  CAS  Google Scholar 

  • Kislenko, V. N., & Oliynyk, L. P. (2002). Complex formation of polyethyleneimine with copper(II), nickel(II), and cobalt(II) ions. Journal of Polymer Science A, 40, 914–922.

    Article  CAS  Google Scholar 

  • Kobya, M., Demirbas, E., Senturk, E., & Ince, M. (2005). Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technology, 96, 1518–1521.

    Article  CAS  Google Scholar 

  • Kokorin, A. I., Lymar, S. V., & Parmon, V. N. (1981). Structure of the polymer coil of branched polyethyleneimine in solution in the presence of copper ions. Polymer Science USSR, 23, 2209–2214.

    Article  Google Scholar 

  • Kumar, K. V., & Sivanesan, S. (2007). Sorption isotherm for safranin onto rice husk. Dyes and Pigments, 72, 130–133.

    Article  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica, and platinum. Journal of the American Chemical Society, 40, 1361–1368.

    Article  CAS  Google Scholar 

  • Lopez-Ramon, M. V., Stoeckli, F., Moreno-Castilla, C., & Carasco-Martin, F. (1999). On the characterisation of acidic and basic surface sites on carbons by various techniques. Carbon, 37, 1215–1221.

    Article  CAS  Google Scholar 

  • Lua, A. C., & Guo, J. (1998). Preparation and characterization of chars from oil palm waste. Carbon, 36, 1663–1670.

    Article  CAS  Google Scholar 

  • Maroto-Valer, M. M., Tang, Z., & Zhang, Y. (2005). CO2 capture by activated and impregnated anthracites. Fuel Processing Technology, 86, 1487–1502.

    Article  CAS  Google Scholar 

  • Monser, L., & Adhoum, N. (2002). Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Separation and Purification Technology, 26, 137–146.

    Article  CAS  Google Scholar 

  • Mullet, M., Fievet, P., Szymczyk, A., Foissy, A., Reggiani, J. C., & Pagetti, J. (1999). A simple and accurate determination of the point of zero charge of ceramic membranes. Desalination, 121, 41–48.

    Article  CAS  Google Scholar 

  • Ozkaya, B. (2006). Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. Journal of Hazardous Materials, B129, 158–163.

    Article  Google Scholar 

  • Park, S. J., & Jang, Y. S. (2002). Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(IV). Journal of Colloid and Interface Science, 249, 458–463.

    Article  CAS  Google Scholar 

  • Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. Journal of Physical Chemistry, 63, 1024.

    Article  CAS  Google Scholar 

  • Saygideger, S., Gulnaz, O., Istifli, E. S., & Yucel, N. (2005). Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: effect of physicochemical environment. Journal of Hazardous Materials, 126, 96–104.

    Article  CAS  Google Scholar 

  • Suen, S. Y. (1996). A comparison of isotherm and kinetic models for binary solute adsorption to affinity membranes. Journal of Chemical Technology and Biotechnology, 65, 249–257.

    Article  CAS  Google Scholar 

  • Ucer, A., Uyanik, A., & Aygun, S. F. (2006). Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Separation and Purification Technology, 47, 113–118.

    Article  Google Scholar 

  • Vladimir, S. J., & Malik, D. (2002). Characterization and metal sorptive properties of oxidized active carbon. Journal of Colloid and Interface Science, 250, 213–220.

    Article  Google Scholar 

  • Wu, S. N., & Chen, P. J. (2001). Modification of a commercial activated carbon for metal adsorption by several approaches. Paper presented at International Containment & Remediation Technology Conference and Exhibition, Orlando, Florida, June.

  • Xu, X., Song, C., Andresen, J. M., Miller, B. G., & Scaroni, A. W. (2002). Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy and Fuels, 16, 1463–1469.

    Article  CAS  Google Scholar 

  • Yin, C. Y., Aroua, M. K., & Daud, W. M. A. W. (2007a). Modification of granular activated carbon using low molecular weight polymer for enhanced removal of Cu 2+  from aqueous solution. Paper presented at International Conference on Water Management and Technology Applications in Developing Countries, Kuala Lumpur, Malaysia, May.

  • Yin, C. Y., Aroua, M. K., & Daud, W. M. A. A. (2007b). Impregnation of palm shell activated carbon with polyethyleneimine and its effect on Cd2+ adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 307, 128–136.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Ministry of Science, Technology and Innovation, Malaysia for the IRPA research grant and Bravo Green Sdn Bhd, Kuching, Malaysia for generous provision of palm shell activated carbon for research purposes. The authors would also like to acknowledge Mr. Mohd Jindra Aris for assisting in description of the non-linear method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Yang Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, C.Y., Aroua, M.K. & Daud, W.M.A.W. Enhanced Adsorption of Metal Ions Onto Polyethyleneimine-Impregnated Palm Shell Activated Carbon: Equilibrium Studies. Water Air Soil Pollut 192, 337–348 (2008). https://doi.org/10.1007/s11270-008-9660-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9660-9

Keywords

Navigation