Skip to main content

Advertisement

Log in

Groundwater Vulnerability and Risk Mapping Based on Residence Time Distributions: Spatial Analysis for the Estimation of Lumped Parameters

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Specific vulnerability estimations for groundwater resources are usually geographic information system-based (GIS) methods that establish spatial qualitative indexes which determine the sensitivity to infiltration of surface contaminants, but with little validation of the working hypothesis. On the other hand, lumped parameter models, such as the Residence Time Distribution (RTD), are used to predict temporal water quality changes in drinking water supply, but the lumped parameters do not incorporate the spatial variability of the land cover and use. At the interface between these two approaches, a GIS tool was developed to estimate the lumped parameters from the vulnerability mapping dataset. In this method the temporal evolution of groundwater quality is linked to the vulnerability concept on the basis of equivalent lumped parameters that account for the spatially distributed hydrodynamic characteristics of the overall unsaturated and saturated flow nets feeding the drinking water supply. This vulnerability mapping method can be validated by field observations of water concentrations. A test for atrazine specific vulnerability of the Val d’Orléans karstic aquifer demonstrates the reliability of this approach for groundwater contamination assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albéric P (2004) River back flooding into a karst resurgence (Loiret, France). J Hydrol 286:194–202

    Article  Google Scholar 

  • Aller L, Bennett T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeological settings. US Environmental Protection Agency, Washington DC, USA

    Google Scholar 

  • Aris R (1959) On the dispersion of a solute by diffusion, convection and exchange between phases. Chem React Eng. doi:A252

  • Auterives C, Binet S, Albéric P (2014) Inferred conduit network geometry from geological evidences and water-head in a fluvio-karstic system (Val d’Orleans, France). Environ Earth Sci. doi:10.1007/978-3-319-06139-9_3

    Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J. doi:10.1007/s10040-004-0402-9

    Google Scholar 

  • Barry DA, Parker JC (1987) Approximations for solute transport through porous media with flow transverse to layering. Transp Porous Media 2:65–82

    Google Scholar 

  • BDAT-GISSOL-INRA (2014). http://www.gissol.fr/programme/bdat/bdat.php. Accessed 10 Dec 2014

  • Beltman WHJ, Boesten JJTI, Van der Zee SEATM (1994) Analytical modelling of pesticide transport from the soil surface to a drinking water well. J Hydrol 169:209–228

    Article  Google Scholar 

  • Binet S, Motellica M, Touze S, Bru K, Klinka T (2015) Water and Acrylamide monomer transfer rates from a settling basin to groundwaters. Environ Sci Pollut Res 22:6431–6439

    Article  Google Scholar 

  • Brouyère S (2001) Modelling of dual porosity media: comparison of different techniques and evaluation on the impact on plume transport simulations. PhD Thesis Liège University

  • Charmoille A, Binet S, Bertrand C, Guglielmi Y, Mudry J (2009) Hydraulic interactions between fractures and bedding planes in a carbonate aquifer studied by means of experimentally induced water-table fluctuations Coaraze experimental site, southeastern France. Hydrogeol J 17:1607–1616

    Article  Google Scholar 

  • Chéry J (1983) Etude hydrochimique d’un aquifère karstique alimenté par perte de cours d’eau (La Loire): Le système des calcaires de Beauce sous le Val d’Orléans. PhD Thesis Orléans University

  • Desprez N (1967) Inventaire et étude hydrogéologique du Val d’Orléans. Rapport BRGM D-SGR-67-A21

  • Doerfliger N, Jeannin PY, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39:165–176

    Article  Google Scholar 

  • Escolero OA, Marin LE, Steinich B, Pacheco AJ, Cabrera SA, Alcocer J (2002) Development of a protection strategy of karst limestone aquifers: the Merida Yucatan, Mexico case study. Water Resour Manag 16:351–367

    Article  Google Scholar 

  • Fernandez GP, Chescheir GM, Skaggs RW, Amatya DM (2006) DRAINMOD – GIS: a lumped parameter watershed scale drainage and water quality model. Agric Water Manag. doi:10.1016/j.agwat.2005.03.004

    Google Scholar 

  • Flury M (1996) Experimental evidence of transport of pesticides through field soils - a review. J Environ Qual 25:25–45

    Article  Google Scholar 

  • Footways/Géo-Hyd (2013) Application Phyto’Scope au Val d’Orléans: Outils d’évaluation du transfert des produits phytosanitaires de leurs zones d’application vers les eaux de surface et les eaux souterraines

  • Gelhar LW (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 7:1955–1974

    Article  Google Scholar 

  • Goldscheider N, Popescu C (2003) Vulnerability and risk mapping for the protection of carbonate (karst) aquifer. European commission Directorate - General for Research, pp 320

  • Goldscheider N, Hötzl H, Fries W, Jordan P (2001) Validation of a vulnerability map (EPIK) with tracer tests. 7th conference on limestone hydrology and fissured media. Sci Tech Environ Mém 13:167–170

    Google Scholar 

  • Gutierrez A, Binet S (2010) La Loire souterraine: circulations karstiques dans le Val d’Orléans. Geosciences 12:42–53

    Google Scholar 

  • Holman IP, Palmer RC, Bellamy PH, Hollis JM (2005) Validation of an intrinsic groundwater pollution vulnerability methodology using a national nitrate database. Hydrogeol J 13(5):665–674

    Article  Google Scholar 

  • IUPAC (2013) Global availability of information on agrochemicals. University of Hertfordshire. http://sitem.herts.ac.uk/aeru/footprint/es/Reports/43.htm . Accessed 10 Apr 2013

  • Jeannin PY, Cornaton, F, Zwahlen F, & Perrochet P (2001) VULK : a tool for intrinsic vulnerability assessment and validation. 7th conference on limestone. Hydrology and fissured media, Besançon. Sci Tech Envir Mém H S 13:185–190

  • Joigneaux E (2011) Etat qualitatif des eaux de la nappe du Val d’Orléans; Impact du changement climatique et gestion durable de la ressource. PhD Thesis Orléans University

  • Joigneaux E, Albéric P, Pauwels H, Pagé C, Terray L, Bruand A (2011) Impact of climate change on groundwater point discharge: back flooding of karstic springs (Loiret, France). Hydrol Earth Syst Sci 15:2459–2470

    Article  Google Scholar 

  • Joodi AS, Sizaret S, Binet S, Bruand A, Alberic P, Lepiller M (2009) Development of a Darcy-Brinkman model to simulate water flow and tracer transport in a heterogeneous karstic aquifer (Val d’Orléans, France). Hydrogeol J 18:295–309

    Article  Google Scholar 

  • Jurgens BC, Böhlke JK, Eberts SM (2012) Tracer LPM (Version 1): An Excel ® workbook for interpreting groundwater age distributions from environmental tracer data. US Geological Survey Techniques and Methods Report 4-F3, USA

  • Jury A (1982) Simulation of solute transport using a transfer function model. Water Resour Res 2:363–368

    Article  Google Scholar 

  • Kladivko EJ, Van Scoyoc GE, Monke EJ, Oates KM, Pask W (1991) Pesticide and nutrient movement into subsurface tile drains on a silt loam soil in Indiana. J Environ Qual 20:264–270

    Article  Google Scholar 

  • Kreft A, Zuber A (1978) On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chem Eng Sci 33:1471–1480

    Article  Google Scholar 

  • Larsbo M, Jarvis N (2003) A model of water flow and solute transport in macroporous soil. Technical description. Studies in the biogeophysical environment, Swedish

  • Lasserre F, Razack M, Banton O (1999) A GIS-linked model for the assessment of nitrate contamination in groundwater. J Hydrol 224:81–90

    Article  Google Scholar 

  • Ledoux E (2003) Modèles mathématiques en hydrogéologie. Document du Centre d’Information Géologique Ecole Nationale Supérieur des Mines de Paris, Paris

  • Lelong F, Jojza N (2008) Fonctionnement du système karstique du Val d’Orléans: les acquis, les interrogations. CFH - Colloque hydrogéologie karst au travers des travaux de Michel Lepiller, Orléans

  • Lepiller M (2006) Le Val d’Orléans. Aquifère et eaux souterraines en France (BRGM), pp 200–214

  • Levenspiel O (1962) Chemical reaction engineering. New York

  • Li C, Ren L (2011) Estimation of unsaturated soil hydraulic parameters using the ensemble kalman filter. Vadose Zone J 10:1205–1227

    Article  Google Scholar 

  • Livrozet E (1984) Influence des apports de la Loire sur la qualité bactériologique et chimique de l’aquifère karstique du Val d’Orléans. PhD Thesis Orléans University

  • Maloszewski P, Zuber A (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers – 1. Models and their applicability. J Hydrol 57:207–231

    Article  Google Scholar 

  • Martin JC, Noyer ML (2003) Caractérisation du risque d’inondation par remontée de nappe sur le Val d’Orléans. BRGM, Orléans

    Google Scholar 

  • Molénat J, Davy P, Gascuel-Odoux C, Durand P (1999) Study of three subsurface hydrologic systems based on spectral and cross-spectral analysis of time series. J Hydrol 222:152–164

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I - a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Neukum C, Hötzl H, Himmelsbach T (2008) Validation of vulnerability mapping methods by field investigations and numerical modelling. Hydrogeol J. doi:10.1007/s10040-007-0249-y

    Google Scholar 

  • Panagopoulos GP, Antonakos AK, Lambrakis NJ (2006) Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol J 14:894–911

    Article  Google Scholar 

  • Plummer R, de Loë R, Armitage D (2012) A systematic review of water vulnerability assessment tools. Water Resour Manag 26:4327–4346

    Article  Google Scholar 

  • Sadek MA, Abd El-Samie SG (2001) Pollution vulnerability of the quaternary aquifer near Cairo, Egypt, as indicated by isotopes and hydrochemistry. Hydrogeol J. doi:10.1007/s100400100125

    Google Scholar 

  • Schwientek P, Maloszewski P, Einsiedl F (2009) Effect of the unsaturated zone thickness on the distribution of water mean transit times in a porous aquifer. J Hydrol 373:516–526

    Article  Google Scholar 

  • Šimůnek J, Šejna M, Sakai M, Van Genuchten M Th. (2008) The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Riverside, California

  • Srinivasan R, Arnold JG (1994) Integration of basin-scale water quality model with GIS. J Am Water Resour Assoc 30:453–462

    Article  Google Scholar 

  • Visser A, Dubus IG, Broes HP, Brouyère S, Korcz M, Orban P (2009) Comparison of methods for the detection and extrapolation of trends in groundwater quality. J Environ Monit 11:2030–2043

    Article  Google Scholar 

  • Voltz M, Louchart X (2001) Les facteurs clés de transfert des produits phytosanitaires vers les eaux de surface. Ingénieries - Phytosanitaires, pp 45–54

  • Vrba J, Zaporozec A (1994) Guidebook on mapping groundwater vulnerability. USA

  • Wauchope RD (1978) The pesticide content of surface water draining from agricultural fields. J Environ Qual 7:459–472

    Article  Google Scholar 

  • Zwahlen F et al. (2003) COST Action 620 - vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report. European Cooperation in the field of scientific and technical research (COST Action 620)

Download references

Acknowledgments

This work is part of the PhD project supported by GEO-HYD (Antea members) and a national grant from the National Research and Technology Association (ANRT – CIFRE).

The database used was made available by the INSU/CNRS national observatory of karstic aquifers, SNO KARST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dedewanou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedewanou, M., Binet, S., Rouet, J.L. et al. Groundwater Vulnerability and Risk Mapping Based on Residence Time Distributions: Spatial Analysis for the Estimation of Lumped Parameters. Water Resour Manage 29, 5489–5504 (2015). https://doi.org/10.1007/s11269-015-1130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-015-1130-8

Keywords

Navigation