Skip to main content
Log in

Genome sequence analysis of two South African isolates of Moroccan watermelon mosaic virus infecting cucurbits

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Moroccan watermelon mosaic virus (MWMV) has been prevalent in cucurbits in the Republic of South Africa (RSA) since it was first reported in 1987. However, full genome studies of the South African isolates have never been conducted previously. The full genome of two MWMV isolates infecting cucurbits (Cucurbita pepo L.) in the province of KwaZulu-Natal, RSA, was compared with the genome of the Tunisian isolate in this communication. The genome sequences of the RSA MWMV isolates were elucidated using next-generation sequencing and Sanger sequencing. The analyses performed included nucleotide and amino acid sequence comparison, determination of the genetic distances, detection of potential recombination, and phylogeny. The genome sequences of the RSA MWMV isolates were found to be 9719 nucleotides long, excluding the poly(A) tail. Sequence homology, genetic distances, and phylogenetic analyses indicated close relationships between the RSA isolates. This record will contribute to building up the MWMV isolate sequences from the different countries where the virus occurs, a useful step toward understanding MWMV evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. J.D. Ibaba, M.D. Laing, A. Gubba, Crop. Prot. 75, 46–54 (2015). doi:10.1016/j.cropro.2015.04.019

    Article  Google Scholar 

  2. F.W. van der Meer, H.M. Garnett, J. Phytopathol. 120, 255–270 (1987). doi:10.1111/j.1439-0434.1987.tb04440.x

    Article  Google Scholar 

  3. H. Lecoq and C. Desbiez, in Adv. Virus Res., edited by L. Gad L. Hervé (Academic Press, 2012), pp. 67-126. doi:http://dx.doi.org/10.1016/B978-0-12-394314-9.00003-8

  4. S. Yakoubi, C. Desbiez, H. Fakhfakh, C. Wipf-Scheibel, M. Marrakchi, H. Lecoq, Arch. Virol. 153, 117–125 (2008). doi:10.1007/s00705-007-1074-2

    Article  CAS  PubMed  Google Scholar 

  5. N.M. McKern, P.M. Strike, O.W. Barnett, C.W. Ward, D.D. Shukla, Arch. Virol. 131, 467–473 (1993). doi:10.1007/BF01378647

    Article  CAS  PubMed  Google Scholar 

  6. K.R. Cradock, M.D. Laing, J.V. da Graça, Rev. Mex. Fitopatol. 19, 251–252 (2001). (articulo.oa?id = 61219220)

    Google Scholar 

  7. W. Menzel, M. Abang, S. Winter, Arch. Virol. 156, 2309–2311 (2011). doi:10.1007/s00705-011-1124-7

    Article  CAS  PubMed  Google Scholar 

  8. Y. Arocha, N. Vigheri, B. Nkoy-Florent, K. Bakwanamaha, B. Bolomphety, M. Kasongo, P. Betts, W.A. Monger, V. Harju, R.A. Mumford, P. Jones, Plant. Pathol. 57, 387 (2008). doi:10.1111/j.1365-3059.2007.01658.x

    Article  Google Scholar 

  9. A.T. Owolabi, F. Rabenstein, F. Ehrig, M. Maiss Edgar, H.J. Vetten, Int. J. Virol. 8, 258–270 (2012). doi:10.3923/ijv.2012.258.270

    Article  Google Scholar 

  10. H. Lecoq, G. Dafalla, C. Desbiez, C. Wipf-Scheibel, B. Delecolle, T. Lanina, Z. Ullah, R. Grumet, Plant. Dis. 85, 547–552 (2001). doi:10.1094/pdis.2001.85.5.547

    Article  CAS  Google Scholar 

  11. H. Lecoq, I. Justafre, C. Wipf-Scheibel, C. Desbiez, Plant. Pathol. 57, 766 (2008). doi:10.1111/j.1365-3059.2008.01848.x

    Article  Google Scholar 

  12. I. Malandraki, N. Vassilakos, C. Xanthis, G. Kontosfiris, N.I. Katis, C. Varveri, Plant. Dis. 98, 702 (2013). doi:10.1094/PDIS-10-13-1100-PDN

    Article  Google Scholar 

  13. P. Roggero, G. Dellavalle, V. Lisa, V.M. Stravato, Plant. Dis. 82, 351 (1998). doi:10.1094/PDIS.1998.82.3.351B

    Article  Google Scholar 

  14. A.M. Bolger, M. Lohse, B. Usadel, Bioinformatics 30, 2114 (2014). doi:10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, Mol. Biol. Evol. 30, 2725–2729 (2013). doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. K. Tamura, M. Nei, S. Kumar, Proc. Natl. Acad. Sci. USA. 101, 11030–11035 (2004). doi:10.1073/pnas.0404206101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D.P. Martin, B. Murrell, M. Golden, A. Khoosal, B. Muhire, Virus. Evol. 1, vev003 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  18. G. Romay, H. Lecoq, C. Desbiez, Arch. Virol. 159, 277–289 (2014). doi:10.1007/s00705-013-1798-0

    Article  CAS  PubMed  Google Scholar 

  19. S. Yakoubi, H. Lecoq, C. Desbiez, Virus. Genes. 37, 103–109 (2008). doi:10.1007/s11262-008-0237-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr Jonathan Featherston and Ms Thulile Faith Nhlapo, from the ARC-BTP, for their technical guidance on NGS that they provided. Sanger Sequencing was performed at Inqaba Biotechnical Industries (Pty) Ltd (Pretoria, RSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustine Gubba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Seung-Kook Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibaba, J.D., Laing, M.D. & Gubba, A. Genome sequence analysis of two South African isolates of Moroccan watermelon mosaic virus infecting cucurbits. Virus Genes 52, 896–899 (2016). https://doi.org/10.1007/s11262-016-1372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-016-1372-4

Keywords

Navigation