Skip to main content

Advertisement

Log in

Phylogenetic analysis of Tomato spotted wilt virus (TSWV) NSs protein demonstrates the isolated emergence of resistance-breaking strains in pepper

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Resurgence of Tomato spotted wilt virus (TSWV) worldwide as well as in Hungary causing heavy economic losses directed the attention to the factors contributing to the outbreak of this serious epidemics. The introgression of Tsw resistance gene into various pepper cultivars seemed to solve TSWV control, but widely used resistant pepper cultivars bearing the same, unique resistance locus evoked the rapid emergence of resistance-breaking (RB) TSWV strains. In Hungary, the sporadic appearance of RB strains in pepper-producing region was first observed in 2010–2011, but in 2012 it was detected frequently. Previously, the non-structural protein (NSs) encoded by small RNA (S RNA) of TSWV was verified as the avirulence factor for Tsw resistance, therefore we analyzed the S RNA of the Hungarian RB and wild type (WT) isolates and compared to previously analyzed TSWV strains with RB properties from different geographical origins. Phylogenetic analysis demonstrated that the different RB strains had the closest relationship with the local WT isolates and there is no conserved mutation present in all the NSs genes of RB isolates from different geographical origins. According to these results, we concluded that the RB isolates evolved separately in geographic point of view, and also according to the RB mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Goldbach, D. Peters, Semin. Virol. 5, 113–120 (1996)

    Article  Google Scholar 

  2. J.A. Tomlinson, Ann. Appl. Biol. 110, 661–681 (1987)

    Article  Google Scholar 

  3. D.E. Ullmann, T.L. German, J.L. Sherwood, D.M. Westcot, F.A. Cantone, Phytopathology 83, 456–463 (1993)

    Article  Google Scholar 

  4. A.E. Whitfield, D.E. Ullmann, T.L. German, Ann. Rev. Phytopathol. 43, 459–489 (2005)

    Article  CAS  Google Scholar 

  5. P. Roggero, V. Masenga, L. Tavella, Plant Dis. 86, 950–954 (2002)

    Article  Google Scholar 

  6. P. Margaria, M. Ciuffo, M. Turina, Plant. Pathol. 53, 795 (2004)

    Article  Google Scholar 

  7. F. Garcia-Arenal, B.A. McDonald, Phytopathology 93, 941–952 (2003)

    Article  PubMed  Google Scholar 

  8. M.L. Thomas-Carroll, R.A.C. Jones, Ann. Appl. Biol. 142, 235–243 (2003)

    Article  Google Scholar 

  9. M. Sharman, D.M. Persley, Australas. Plant. Pathol. 35, 123–128 (2006)

    Article  Google Scholar 

  10. J.H. Kim, G.S. Choi, J.S. Kim, C.K. Choi, Plant Pathol. J. 20, 297–301 (2004)

    Article  Google Scholar 

  11. B.N. Chung, H.S. Choi, E.Y. Yang, J.D. Cho, I.S. Cho, G.S. Choi, S.K. Choi, Plant Pathol. J. 28, 87–92 (2012)

    Article  CAS  Google Scholar 

  12. N.H. Hoang, H.-B. Yang, B.-C. Kang, Sci. Hortic. 161, 8–14 (2013)

    Article  CAS  Google Scholar 

  13. T.L. German, D.E. Ullmann, J.W. Moyer, Ann. Rev. Phytopathol. 30, 315–348 (1992)

    Article  CAS  Google Scholar 

  14. S. Adkins, Mol. Plant Pathol. 1, 151–157 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. D. de Ronde, P. Butterbach, D. Lohuis, M. Hedil, J.W.M. van Lent, R. Kormelink, Mol. Plant Pathol. 14, 405–415 (2013)

    Article  PubMed  Google Scholar 

  16. D. de Ronde, A. Pasquier, S. Ying, P. Butterbach, D. Lohuis, R. Kormelink, Mol. Plant Pathol. 15, 185–195 (2014)

    Article  PubMed  Google Scholar 

  17. R. Gáborjányi, G. Csilléry, I. Tóbiás, G. Jenser, IXth Eucarpia Meeting, Budapest (1995), pp. 159–160

  18. M.F. Clark, A.N. Adams, J. Gen. Virol. 34, 475–483 (1977)

    Article  CAS  PubMed  Google Scholar 

  19. S. Kumar, J. Dudley, M. Nei, K. Tamura, Brief Bioinform. 9, 299–306 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. M. Jahn, I. Paran, K. Hoffmann, E.R. Radwanski, K.D. Livingstone, R.C. Grube, E. Aftergoot, M. Lapidot, J. Moyer, Mol. Plant Microbe Interact. 13, 673–682 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. A. Takeda, K. Sugiyama, H. Nagano, M. Mori, M. Kaido, K. Mise, S. Tsuda, T. Okuno, FEBS Lett. 532, 75–79 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. E. Bucher, T. Sijen, P. de Haan, R. Goldbach, M. Prins, J. Virol. 77, 1329–1336 (2003)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. S. Sonoda, H. Tsumuki, Plant Sci. 166, 771–778 (2004)

    Article  CAS  Google Scholar 

  24. P. Margaria, M. Ciuffo, D. Pacifico, M. Turina, Mol. Plant Microbe Interact. 20, 547–558 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. F.A. Lovato, A.K. Inou-Nagata, T. Nagata, A.C. de Ávila, L.A. Pereira, R.O. Resende, Virus Res. 137, 245–252 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. C. López, J. Aramburu, L. Galipienso, S. Soler, F. Nuez, L. Rubio, J. Gen. Virol. 92, 210–215 (2011)

    Article  PubMed  Google Scholar 

  27. D. Tentchev, E. Verdin, C. Marchal, M. Jacquet, J.M. Aguilar, B. Moury, J. Gen. Virol. 92, 961–973 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. S.-Z. Pang, J.H. Bock, M.C. Gonsalves, J.L. Slightom, D. Gonsalves, Phytopathology 84, 243–249 (1994)

    Article  CAS  Google Scholar 

  29. B.D. Harrison, Euphytica 124, 181–192 (2002)

    Article  CAS  Google Scholar 

  30. M.R. Stevens, S.J. Scott, R.C. Gergerich, Euphytica 59, 9–17 (1992)

    Google Scholar 

  31. S. Roselló, M.J. Díez, F. Nuez, Eur. J. Plant Pathol. 104, 499–509 (1998)

    Article  Google Scholar 

  32. J.J. Cho, D.M. Custer, S.H. Brommonschenkel, S.D. Tanksley, Acta Hortic. 431, 367–378 (1996)

    Google Scholar 

  33. G.J. Thompson, J.J.B. Van Zijl, Acta Hortic. 431, 379–384 (1996)

    Google Scholar 

  34. L.J. Latham, R.A.C. Jones, Ann. Appl. Biol. 133, 385–402 (1998)

    Article  Google Scholar 

  35. J. Aramburu, M. Marti, Plant. Pathol. 52, 407 (2003)

    Article  Google Scholar 

  36. M. Ciuffo, M.M. Finetti-Sialer, D. Gallitelli, M. Turina, Plant. Pathol. 54, 564 (2005)

    Article  Google Scholar 

  37. K. Hoffmann, W.P. Qiu, J.W. Moyer, Mol. Plant Microbe Interact. 14, 242–249 (2001)

    Article  CAS  PubMed  Google Scholar 

  38. C. Hagen, A. Frizzi, J. Kao, L. Jia, M. Huang, Y. Zhang, S. Huang, Arch. Virol. 156, 1209–1216 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. N. Mitter, V. Koundal, S. Williams, H. Pappu, PLoS One 8, e76276 (2013). doi:10.1371/journal.pone.0076276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. R. Gáborjányi, G. Jenser, R. Vasdinyei, Hortic. Sci. 26, 91–94 (1994)

    Google Scholar 

  41. W.P. Qiu, S.M. Geske, C.M. Hickey, J.W. Moyer, Virology 244, 186–194 (1998)

    Article  CAS  PubMed  Google Scholar 

  42. S. Lian, J.-S. Lee, W.K. Cho, J. Yu, M.-K. Kim, H.-S. Choi, K.-H. Kim, PLoS One 8, e63380 (2013). doi:10.1371/journal.pone.0063380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. A.C. Kaye, J.W. Moyer, E.J. Parks, I. Carbone, M.A. Cubeta, Phytopathology 101, 147–153 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. M. Tsompana, J. Abad, M. Purugganan, W. Moyer, Mol. Ecol. 14, 53–66 (2005)

    Article  CAS  PubMed  Google Scholar 

  45. W. Qiu, J.W. Moyer, Phytopathology 89, 575–582 (1999)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Salánki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11262_2014_1131_MOESM1_ESM.pdf

Online Resource 1 GenBank accession numbers and main information/characteristics of the TSWV strains implied in the molecular and phylogenetic analysis in this study. * RB: resistance-breaking; WT: wild type (PDF 256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almási, A., Csilléry, G., Csömör, Z. et al. Phylogenetic analysis of Tomato spotted wilt virus (TSWV) NSs protein demonstrates the isolated emergence of resistance-breaking strains in pepper. Virus Genes 50, 71–78 (2015). https://doi.org/10.1007/s11262-014-1131-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-014-1131-3

Keywords

Navigation