Skip to main content
Log in

Oocyte maturation, embryo development and gene expression following two different methods of bovine cumulus-oocyte complexes vitrification

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Objective

To examine the maturational competence, embryo development and expression of genes involved in oocyte maturation and cumulus expansion (GDF9, BMP15, HAS2, TNFAIP6, FGF17 and FSHr) following two standard methods of bovine COCs vitrification.

Methods

Bovine cumulus-oocyte complexes (COCs) were aspirated from slaughtered ovaries and then distributed into three groups: non-vitrified COCs (control), vitrification 1 group (V1); vitrification was performed by 15% ethylene glycol (EG) and 15% DMSO in holding media (TCM-199 with 20% FCS); and vitrification 2 group (V2); vitrification was performed by 40% EG in holding media. After vitrification, COCs were warmed in two steps and cultured and then evaluated for nuclear maturation, embryo development and gene expressions.

Results

The mean (±SD) percentages of nuclear maturation and blastocyst/cleaved were higher in control group (79.5 ± 8.0 and 31.0 ± 5.1%) than the V1 (34.8 ± 9.1 and 4.4 ± 5.1%) and V2 (47.8 ± 11.7 and 7.1 ± 5.8%) groups (P < 0.05), respectively. Further, COCs in V2 group showed higher mean (±SD) percentages of cleavage compared to V1 group (31.8 ± 1.0 vs 21.7 ± 2.8%; P < 0.05). GDF9 and BMP15 expression levels were higher in COCs in the control than of the vitrification groups (P < 0.05). In addition, expression level of GDF9 and BMP15 was higher in V2 group than in V1group (P < 0.05). The expression of HAS2 and FGF17 in V1 group was lower (P < 0.05) than that of the V2 groups.

Conclusions

Expression of oocyte maturation genes was affected by vitrification procedure and conditions. Using EG alone for vitrification of bovine immature COCs, resulted in higher expression of GDF9, BMP15 and production of more in vitro matured and cleaved oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Assidi M, Dufort I, Ali A, Hamel M, Algriany O, Dielemann S, Sirard M-A (2008) Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol Reprod 79(2):209–222

    Article  CAS  PubMed  Google Scholar 

  • Brackett BG, Oliphant G (1975) Capacitation of rabbit spermatozoa in vitro. Biol Reprod 12(2):260–274

    Article  CAS  PubMed  Google Scholar 

  • Brambillasca F, Guglielmo MC, Coticchio G, Renzini MM, Dal Canto M, Fadini R (2013) The current challenges to efficient immature oocyte cryopreservation. J Assist Reprod Genet 30(12):1531–1539

    Article  PubMed  PubMed Central  Google Scholar 

  • Cetin Y, Bastan A (2006) Cryopreservation of immature bovine oocytes by vitrification in straws. Anim Reprod Sci 92(1–2):29–36

    Article  CAS  PubMed  Google Scholar 

  • Cha K, Chung H, Lim J, Ko J, Han S, Choi D, Yoon T (2000) Freezing immature oocytes. Mol Cell Endocrinol 169(1–2):43–47

    Article  CAS  PubMed  Google Scholar 

  • Chen J-Y, Li X-X, Xu Y-K, Wu H, Zheng J-J, Yu X-L (2014) Developmental competence and gene expression of immature oocytes following liquid helium vitrification in bovine. Cryobiology 69(3):428–433

    Article  CAS  PubMed  Google Scholar 

  • Divar M, Kafi M, Mohammadi A, Azari M (2016) The in vitro effect of adiponectin on early bovine embryonic development and transcriptomic markers of oocyte competence JFI V. Reprod Med Genet 4:1–72

    Google Scholar 

  • Dutta D, Dev H, Raj H (2013) In vitro blastocyst development of post-thaw vitrified bovine oocytes. Vet World 6(10):730–733

    Article  Google Scholar 

  • Ebrahimi B, Valojerdi MR, Eftekhari-Yazdi P, Baharvand H, Farrokhi A (2010) IVM and gene expression of sheep cumulus–oocyte complexes following different methods of vitrification. Reprod BioMed Online 20(1):26–34

    Article  PubMed  Google Scholar 

  • Ekart J, McNatty K, Hutton J, Pitman J (2013) Ranking and selection of MII oocytes in human ICSI cycles using gene expression levels from associated cumulus cells. Hum Reprod 28(11):2930–2942

    Article  CAS  PubMed  Google Scholar 

  • Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM (1999) Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol 13:1035–1048

    Article  CAS  PubMed  Google Scholar 

  • Faheem MS, Baron E, Carvalhais I, Chaveiro A, Pavani K, da Silva FM (2015) The effect of vitrification of immature bovine oocytes to the subsequent in vitro development and gene expression. Zygote (Cambridge, England) 23(6):933–942

    Article  CAS  Google Scholar 

  • Fouladi-Nashta A, Alberio A, Kafi M, Nicholas B, Campbell KHS, Webb R (2005) Differential staining combined with TUNEL labelling to detect apoptosis in preimplantation bovine embryos. Reprod BioMed Online 10(4):497–502

    Article  CAS  PubMed  Google Scholar 

  • Fuku E, Kojima T, Shioya Y, Marcus G, Downey B (1992) In vitro fertilization and development of frozen-thawed bovine oocytes. Cryobiology 29(4):485–492

    Article  CAS  PubMed  Google Scholar 

  • Gandolfi F, Luciano A, Modina S, Ponzini A, Pocar P, Armstrong D, Lauria A (1997) The in vitro developmental competence of bovine oocytes can be related to the morphology of the ovary. Theriogenology 48(7):1153–1160

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist RB, Lane M, Thompson JG (2008) Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update 14(2):159–177

    Article  CAS  PubMed  Google Scholar 

  • Gurtovenko AA, Anwar J (2007) Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B 111(35):10453–10460

    Article  CAS  PubMed  Google Scholar 

  • Hansen P (2014) Current and future assisted reproductive technologies for mammalian farm animals the series of advances in experimental medicine and biology. Springer Science Business Media, New York 752:1–22

  • Hosoe M, Kaneyama K, Ushizawa K, Hayashi K-g, Takahashi T (2011) Quantitative analysis of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) gene expression in calf and adult bovine ovaries. Reprod Biol Endocrinol 9(33):1–8

    Google Scholar 

  • Huang Z, Wells D (2010) The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol Hum Reprod 16(10):715–725

    Article  CAS  PubMed  Google Scholar 

  • Hurtt A, Landim-Alvarenga F, Scidel G, Squires E (2000) Vitrification of immature and mature equine and bovine oocytes in an ethylene glycol, ficoll and sucrose solution using open-pulled straws. Theriogenology 54(1):119–128

    Article  CAS  PubMed  Google Scholar 

  • Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB (2005) Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci 118(22):5257–5268

    Article  CAS  PubMed  Google Scholar 

  • Hussein TS, Thompson JG, Gilchrist RB (2006) Oocyte-secreted factors enhance oocyte developmental competence. Dev Biol 296(2):514–521

    Article  CAS  PubMed  Google Scholar 

  • Hyttel P, Fair T, Callesen H, Greve T (1997) Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47(1):23–32

    Article  Google Scholar 

  • Kafi M, McGowan MR, Kirkland PD (2002) In vitro maturation and fertilization of bovine oocytes and in vitro culture of presumptive zygotes in the presence of bovine pestivirus. Anim Reprod Sci 71(3–4):169–179

    Article  CAS  PubMed  Google Scholar 

  • Kathirvel M, Soundian E, Kumanan V (2013) Differential expression dynamics of growth differentiation factor9 (GDF9) and bone morphogenetic factor15 (BMP15) mRNA transcripts during in vitro maturation of buffalo (Bubalus bubalis) cumulus–oocyte complexes. Springer Plus 2(206):1–6

    Google Scholar 

  • Kidder GM, Vanderhyden BC (2010) Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol 88(4):399–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larman MG, Sheehan CB, Gardner DK (2006) Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction 131:53–61

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo P, Rebollar P, Illera M, Illera J, Illera M, Alvarino J (1996) Stimulatory effect of insulin-like growth factor I and epidermal growth factor on the maturation of rabbit oocytes in vitro. J Reprod Fertil 107:109–117

    Article  CAS  PubMed  Google Scholar 

  • Machado MF, Caixeta ES, Sudiman J, Gilchrist RB, Thompson JG, Lima PF, Price CA, Buratini J (2015) Fibroblast growth factor 17 and bone morphogenetic protein 15 enhance cumulus expansion and improve quality of in vitro–produced embryos in cattle. Theriogenology 84(3):390–398

    Article  CAS  PubMed  Google Scholar 

  • Magnusson V, Feitosa WB, Goissis MD, Yamada C, Tavares LMT, Assumpção MEODÁ, Visintin JA (2008) Bovine oocyte vitrification: effect of ethylene glycol concentrations and meiotic stages. Anim Reprod Sci 106(3–4):265–273

    Article  CAS  PubMed  Google Scholar 

  • Mapletoft R, Hasler J (2005) Assisted reproductive technologies in cattle: a review. Rev Sci Tech Off Int Epiz 24(1):393–403

    Article  CAS  Google Scholar 

  • Mara L, Casub S, Cartac A, Dattena A (2013) Cryobanking of farm animal gametes and embryos as a means of conserving livestock genetics. Rev Anim Reprod Sci 138:25–38

    Article  CAS  Google Scholar 

  • Martins R, Costa E, Chagas J, Ignácio F, Torres C, McManus C (2005) Effects of vitrification of immature bovine oocytes on in vitro maturation. Anim Reprod 2(2):128–134

    Google Scholar 

  • Otoi T, Yamamoto K, Koyama N, Tachikawa S, Suzuki T (1998) Cryopreservation of mature bovine oocytes by vitrification in straws. Cryobiology 37(1):77–85

    Article  CAS  PubMed  Google Scholar 

  • Rao BS, Mahesh YU, Charan KV, Suman K, Sekhar N, Shivaji S (2012) Effect of vitrification on meiotic maturation and expression of genes in immature goat cumulus oocyte complexes. Cryobiology 64(3):176–184

    Article  CAS  PubMed  Google Scholar 

  • Russell DL, Robker RL (2007) Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Hum Reprod Update 13(3):289–312

    Article  CAS  PubMed  Google Scholar 

  • Sprícigo JFW, Morais K, Ferreira AR, Machado GM, Gomesb ACM, Rumpf R, Francob MM, Dode MAN (2014) Vitrification of bovine oocytes at different meiotic stages using the cryotop method: assessment of morphological, molecular and functional patterns. Cryobiology 69(2):256–265

    Article  PubMed  Google Scholar 

  • Succu S, Leoni GG, Berlinguer F, Madeddu M, Bebbere D, Mossa F, Bogliolo L, Ledda S, Naitana S (2007) Effect of vitrification solutions and cooling upon in vitro matured prepubertal ovine oocytes. Theriogenology 68(1):107–114

    Article  CAS  PubMed  Google Scholar 

  • Sugiura K, Su YQ, Eppig JJ (2009) Targeted suppression of Has2 mRNA in mouse cumulus cell–oocyte complexes by adenovirus-mediated short-hairpin RNA expression. Mol Reprod Dev 76(6):537–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas FH, Vanderhyden BC (2006) Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth. Reprod Biol Endocrinol 4(19):1–8

    Google Scholar 

  • Trounson A, Kirby C (1989) Problems in the cryopreservation of unfertilized eggs by slow cooling in dimethyl sulfoxide. Fertil Steril 52(5):778–786

    Article  CAS  PubMed  Google Scholar 

  • Vajta G (2000) Vitrification of the oocytes and embryos of domestic animals. Anim Reprod Sci 60-61(2):357–364

    Article  CAS  PubMed  Google Scholar 

  • Wani N, Maurya S, Misra A, Saxena V, Lakhchaura B (2004) Effect of cryoprotectants and their concentration on in vitro development of vitrified-warmed immature oocytes in buffalo (Bubalus bubalis). Theriogenology 61(5):831–842

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Al Naib A, Sun D, Lonergan P (2010) Bovine oocyte vitrification using the cryotop method: effect of cumulus cells and vitrification protocol on survival and subsequent development. Cryobiology 61(1):66–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was funded by the Center for Biotechnology of Animal Reproduction, Shiraz University (Grant No: 84-1251) and Royan Institute, Tehran. We warmly appreciate E. Abed Heydari, H. Jesmani and Z. Taghipour for their cooperation in laboratory preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Kafi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest on the publication of this paper. This research was approved by the local Ethics Committee of Shiraz University and complies with Shiraz University animal welfare guidelines and policies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azari, M., Kafi, M., Ebrahimi, B. et al. Oocyte maturation, embryo development and gene expression following two different methods of bovine cumulus-oocyte complexes vitrification. Vet Res Commun 41, 49–56 (2017). https://doi.org/10.1007/s11259-016-9671-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-016-9671-8

Keywords

Navigation