Skip to main content

Advertisement

Log in

Unraveling the ecosystem functions in the Amazonia–Cerrado transition: evidence of hyperdynamic nutrient cycling

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The contact between savanna and forest in the Amazonia–Cerrado transition zone is characterized by the hyperdynamics of the vegetation (recruitment vs. mortality). However, the related nutrient dynamics under these conditions are not well understood. We determined for the first time the biogeochemical cycles of the vegetation in the zone of transition estimating the litterfall, nutrient input, decomposition rates, and nutrient release in cerradão and cerrado plots. We examine the hypothesis that nutrient cycling is strongly associated with the vegetation dynamics. The litterfall was sampled in 30 traps placed within 1-ha vegetation plots for 2 years. The release of nutrients from the litterfall back to the soil was also estimated using decomposition bags in the two areas. The decomposition rates did not vary between areas, although in the cerradão the input of total biomass (9.27 Mg ha−1 year−1) and total nutrients (219.17 kg ha−1 year−1), the decomposition of the total biomass, and the cycling of most nutrients through litterfall and decomposition were at least twice higher than in the cerrado. These results confirmed the hypothesis concerning the differences between vegetation types in nutrient cycling, suggesting for the first time that the hyperdynamics observed in both vegetations were also reflected in the biogeochemical cycle, particularly in the cerradão. Thus, it is likely that the rapid and effective cycling of nutrients observed in the cerradão might be a key condition guaranteeing the ability of the cerradão to colonize new areas previously occupied by the typical cerrado.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Batermann SA, Hedin LO, van Breugel M, Ransijn J, Craven DJ, Hall JS (2013) Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502:227. doi:10.1038/nature12525

    Google Scholar 

  • Bocock KL, Gilbert OJW (1957) The disappearance of leaf litter under different woodland conditions. Plant Soil 2:179–185. doi:10.1007/BF01398924

    Article  Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538. doi:10.1111/j.1469-8137.2004.01252.x

    Article  CAS  PubMed  Google Scholar 

  • Bonfai DS, Bowman DMJS (2006) Forty years of lowland monsoon rainforest expansion in Kakadu National Park, Northern Australia. Biol Cons 131:553–565

    Article  Google Scholar 

  • Bonini I, Rodrigues C, Dallacort R, Marimon-Junior BH, Carvalho MAC (2014) Rainfall and deforestation in the municipality of Colíder, Southern Amazon. Rev Bras Meteor 29:483–493

    Article  Google Scholar 

  • Bowman DMJS, Murphy PB, Bonfai DS (2010) Has global environmental change caused monsoon rainforests to expand in the Australian monsoon tropics? Landsc Ecol 25:1247–1260

    Article  Google Scholar 

  • Cárdenas ML, Gosling WD, Sherlock SC, Poole I, Pennington TR, Mothes P (2011) The response of vegetation on the Andean Flank in Western Amazonia to pleistocene climate change. Science 25:1055–1058. doi:10.1126/science.1197947

    Article  Google Scholar 

  • Castro AWV, Farias Neto JT, Cavalcante ES (1998) Efeito do espaçamento na produtividade de biomassa de taxi-branco (Sclerolobium paniculatum Vogel). Acta Amaz 28:141–146. doi:10.1590/1809-43921998282146

    Article  Google Scholar 

  • Cianciaruso MV, Pires JSR, Delliti WBC, Pereira SEFL (2006) Produção de serapilheira e decomposição do material foliar em um cerradão na Estação Ecológica de Jataí, município de Luiz Antônio, SP, Brasil. Acta Bot Bras 20:49–59. doi:10.1590/S0102-33062006000100006

    Article  Google Scholar 

  • Constantinides M, Fownes JH (1994) Nitrogen mineralization from leaves and litter of tropical plants: relationship to nitrogen, lignin and soluble polyphenol concentrations. Soil Biol Biochem 26:49–55. doi:10.1016/0038-0717(94)90194-5

    Article  CAS  Google Scholar 

  • Eisenhauer N, Reich PB, Isbell F (2012) Decomposer diversity and identity influence plant diversity effects on ecosystem functioning. Ecology 93:2227–2240

    Article  PubMed  Google Scholar 

  • Embrapa (1999) Manual de análises químicas de solos, plantas e fertilizantes. Embrapa, Brasília

    Google Scholar 

  • Franczak DD, Marimon BS, Marimon-Junior BH, Mews HA, Maracahipes L, Oliveira EA (2011) Changes in the structure of a savanna forest over a six-year period in the Amazon-Cerrado transition, Mato Grosso state, Brazil. Rodriguésia 62:425–436

    Article  Google Scholar 

  • Franken M, Irmler V, Klinge H (1979) Litterfall in inundation, riverine and terra firme Forest of central Amazonia. Tropical Ecology 20:225–235. doi:10.1007/BF00176910

    Google Scholar 

  • Furley PA (1999) The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Glob Ecol Biogeogr 8:223–241. doi:10.1046/j.1466-822X.1999.00142.x

    Article  Google Scholar 

  • Gama-Rodrigues AC, Barros NF, Santos ML (2003) Decomposição e liberação de nutrientes do folhedo de espécies florestais nativas em plantios puros e mistos no sudeste da Bahia. R Bras Ci Solo 27:1021–1031. doi:10.1590/S0100-06832003000600006

    Article  CAS  Google Scholar 

  • Gloor MRJW, Brienen D, Galbraith TR et al (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1–5. doi:10.1002/grl.50377

    Article  Google Scholar 

  • Hammer ØY, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for Education and data analysis. Palaeontol Electron 4:1–8

    Google Scholar 

  • Haridasan M (1992) Observations on soils, foliar nutrient concentration and floristic composition of cerrado sensu stricto and cerradão communities in central Brazil. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-Savanna Boundaries. Chapman & Hall Publishing, London, pp 171–184

    Google Scholar 

  • Haridasan M (2005) Competição por nutrientes em espécies arbóreas do cerrado. In: Scariot A, Felfili JM, Souza-Silva JC (eds) Cerrado: Ecologia. Biodiversidade e Conservação, Ministério do Meio Ambiente, Brasília, pp 169–178

    Google Scholar 

  • Isbell F, Calcagno V, Hector A et al (2011) High plant diversity is needed to maintain ecosystem services. Nature 477:199–203

    Article  CAS  PubMed  Google Scholar 

  • Jacobson TKB, Bustamante MMC (2014) Leaf litter decomposition and nutrient release under nitrogen, phosphorus and nitrogen plus phosphorus additions in a savanna in Central Brazil. In: Sutton MA, Mason KE, Sheppard LJ, Sverdrup H, Haeuber R, Hicks WK (eds) Nitrogen deposition, critical loads and biodiversity, 1st edn. Springer, New York, pp 155–163

    Chapter  Google Scholar 

  • Kauffman JB, Cummings DL, Ward DE (1994) Relationships of fire, biomass and nutritional dynamics along vegetation gradient in the Brazilian Cerrado. J Ecol 82:519–531

    Article  Google Scholar 

  • Klinge H, Rodrigues WA (1968) Litter production in an area of Amazonian terra firme forest. Part I. Litter fall, organic carbon and total nitrogen contents of litter. Amazoniana 1:287–302

    Google Scholar 

  • Lehmann CER, Archibald SA, Hoffmann WA, Bond JM (2011) Deciphering the distribution of the savanna biome. New Phytol 191:197–209

    Article  PubMed  Google Scholar 

  • Lloyd J, Domingues TF, Schrodt F et al (2015) Edaphic, structural and physiological contrasts across Amazon Basin forest-savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function. Biogeosci Discuss 12:7879–7977. doi:10.5194/bgd-12-7879-2015

    Article  Google Scholar 

  • Marimon BS, Lima ES, Duarte TG, Chieregatto LC, Ratter JA (2006) Observations on the vegetation of northeastern Mato Grosso, Brazil, IV an analysis of the Cerrado-Amazonian forest ecotone. Edinburgh J Bot 63:323–341. doi:10.1017/S0960428606000576

    Article  Google Scholar 

  • Marimon BS, Felfili JM, Lima ES, Duarte WMG, Marimon-Junior BH (2010) Environmental determinants for natural regeneration of gallery forest at the Cerrado/Amazonia boundaries in Brazil. Acta Amaz 40:107–118

    Article  CAS  Google Scholar 

  • Marimon BS, Marimon-Junior BH, Feldpausch TR et al (2014) Disequilibrium and hyperdynamic tree turnover at the forest-savanna transition zone in southern Amazonia. Plant Ecol Divers 7:281–292. doi:10.1080/17550874.2013.818072

    Article  Google Scholar 

  • Marimon-Junior BH (2007) Relação entre diversidade arbórea e Aspectos do ciclo biogeoquímico de uma Floresta Monodominate de Brosimum rubescens Taub. e uma Floresta Mista no Leste Mato-Grossense. Tese, Universidade de Brasília

  • Marimon-Junior BH, Haridasan M (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Bot Bras 19:913–926

    Article  Google Scholar 

  • Martins SV, Rodrigues RR (1999) Produção de serapilheira em clareiras de uma floresta estacional semidecidual no Município de Campinas, SP. Rev Bras Bot 22:405–412. doi:10.1590/S0100-84041999000300009

    Google Scholar 

  • Mayle FE, Burbridge R, Killeen IJ (2000) Millennial-Scale dynamics of Southern Amazonian Rain Forests. Science 290:2291–2294. doi:10.1007/978-90-481-2672-9_12

    Article  CAS  PubMed  Google Scholar 

  • Mitchard ETA, Saatchi SS, Gerard FF, Lewis SL, Meir P (2009) Measuring woody encroachment along a forest-savanna boundary in Central Africa. Earth Interact 13:1–29

    Article  Google Scholar 

  • Morandi PS, Marimon BS, Oliveira EA, Reis SM, Valadão MBX, Forsthofer M, Passos FB, Marimon-Junior BH (2016) Vegetation succession in the Cerrado/Amazonian forest transition zone of Mato Grosso State, Brazil. Edinb J Bot 73:83–93. doi:10.1017/S096042861500027X

    Article  Google Scholar 

  • Nardoto GB, Bustamente MMC (2003) Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesqui Agropec Bras 38:955–962

    Article  Google Scholar 

  • Nardoto GB, Bustamante MMC, Pinto AS, Klink CA (2006) Nutrient use efficiency at ecosystem and species level in savanna areas of Central Brazil and impacts of fire. J Trop Ecol 22:191–201

    Article  Google Scholar 

  • Nepstad DC, Stickler CM, Soares-Filho B, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos Trans R Soc Lond B Biol Sci 363:1737–1746. doi:10.1098/rstb.2007.0036

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira Filho AT, Ratter JA (2002) Vegetation physiognomies and woody flora of the Cerrado Biome. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a neotropical savanna, 1st edn. Columbia University Press, New York, pp 91–120

    Chapter  Google Scholar 

  • Pagano SN, Durigan G (2000) Aspectos da ciclagem de nutrientes em Matas Ciliares do oeste do Estado de São Paulo, Brasil. In: Rodrigues RR, Leitão Filho HF (eds) Matas ciliares: conservação e recuperação, 1st edn. Fapesp, São Paulo, pp 109–123

    Google Scholar 

  • Parrón L (2004) Relação entre aspectos do ciclo biogeoquímico e gradiente topográfico na Mata de Galeria do Córrego Pitoco (DF). PhD Thesis, Universidade de Brasília

  • Parron LM, Bustamante MMC, Markewitz D (2011) Fluxes of nitrogen and phosphorus in a gallery forest in the cerrado of central Brazil. Biogeochemistry 105:89–104

    Article  CAS  Google Scholar 

  • Pellegrini AFA, Hoffmann WA, Franco AC (2014) Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95:342–352

    Article  PubMed  Google Scholar 

  • Peres JRR, Suhet AR, Vargas MAT, Drozdowics A (1983) Litter production in areas of Brazilian “cerrados”. Pesqui Agropecu Bras 18:1037–1043

    Google Scholar 

  • Ratter JA (1992) Transitions between cerrado and forest vegetation in Brazil. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries. Chapman & Hall, London, pp 417–442

    Google Scholar 

  • Ratter JA, Richards PW, Argent G, Gifford DR (1973) Observations on the vegetation of the northeastern Mato Grosso. I. The woody vegetation types of the Xavantina-Cachimbo Expedition área. Philos Trans R Soc Lond 266:449–492

    Article  Google Scholar 

  • Schwartz D, Foresta H, Mariotti A, Balesdent J, Massimba JP, Girardin C (1996) Present dynamics of the savanna-forest boundary in the Congolese Mayombe: a pedological, botanical and isotopic (13C and 14C) study. Oecologia 106:516–524

    Article  Google Scholar 

  • Silva CJ, Sanches L, Bleich ME, Lobo FA, Nogueira JS (2007) Produção de serapilheira no Cerrado e Floresta de Transição Amazônia-Cerrado do Centro-Oeste Brasileiro. Acta Amaz 37:543–548. doi:10.1590/S0044-59672007000400009

    Article  Google Scholar 

  • Silva FAM, Assad ED, Evangelista BA (2008) Caracterização Climática do Bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JP (eds) Cerrado: Ecologia e Flora, 1st edn. Embrapa, Planaltina, pp 69–88

    Google Scholar 

  • Silva CJ, Lobo FA, Bleich ME, Sanches L (2009) Contribuição de folhas na formação da serapilheira e no retorno de nutrientes em floresta de transição no norte de Mato Grosso. Acta Amaz 39:591–600

    Article  Google Scholar 

  • Silva LCR, Hoffmann WA, Rossatto DR, Haridasan M, Franco AC, Horwath WR (2013) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373:829–842

    Article  CAS  Google Scholar 

  • Staver CA, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–232

    Article  CAS  PubMed  Google Scholar 

  • Sundarapandian SM, Swamy PS (1999) Litter production and leaf-litter decomposition of selected tree species in tropical forests at Kodayar in the Western Ghats, India. For Ecol Manage 123:231–244. doi:10.1016/S0378-1127(99)00062-6

    Article  Google Scholar 

  • Tan KH (1996) Soil sampling, preparation, and analysis. Marcell, New York

    Google Scholar 

  • Valadão MBX, Marimon-Junior BH, Oliveira B, Winck N, Souza MGR, Marimon BS (2016) Biomass hyperdynamics as a key modulator of forest self-maintenance in a dystrophic soil in the Amazonia-Cerrado transition. Sci For 4:475–485. doi:10.18671/scifor.v44n110.20

    Google Scholar 

  • Venter FJ, Govender N (2012) A geomorphic and soil description of the long term fire experiment in the Kruger National Park. South Africa. Koedoe. doi:10.4102/koedoe.v54i1.1037

    Google Scholar 

  • Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Ann Rev Ecol Syst 17:137–167. doi:10.1146/annurev.es.17.110186.001033

    Article  Google Scholar 

  • Werneck MS, Pedralli G, Gieseke LF (2001) Produção de serrapilheira em três trechos de uma floresta semidecídua com diferentes graus de perturbação na Estação Ecológica do Tripuí, Ouro Preto. Rev Bras Bot 24:195–198

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the UNEMAT Plant Ecology Laboratory at Nova Xavantina for assistance in the field. This study was financially supported through the following projects: PELD-CNPq403725/2012-7 (UNEMAT), RAINFOR (University of Leeds), GEM (University of Oxford), and CNPq-PPBio (457602/2012-0) (UNEMAT). The authors would also like to thank PROCAD UnB/UNEMAT for financial support; the Coordination for Higher Education Training (CAPES) for the concession of a graduate stipend to Bianca de Oliveira; and the Brazilian National Council for Scientific and Technological Development (CNPq) for research productivity grants (PQ-2) to B.H. Marimon-Junior and B.S. Marimon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Hur Marimon Junior.

Additional information

Communicated by Jason B. West.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, B., Marimon Junior, B.H., Mews, H.A. et al. Unraveling the ecosystem functions in the Amazonia–Cerrado transition: evidence of hyperdynamic nutrient cycling. Plant Ecol 218, 225–239 (2017). https://doi.org/10.1007/s11258-016-0681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0681-y

Keywords

Navigation