Skip to main content

Advertisement

Log in

Species richness and resilience of forest communities: combined effects of short-term disturbance and long-term pollution

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Recovery of the species richness of plant communities after experimental disturbances of various severities were studied in spruce forests polluted by atmospheric entry of SO2 and heavy metals from a copper smelter. In the three toxic load zones (impact, buffer, and background), 60 experimental “pit-and-mound” complexes (sized 1 m × 2 m, 20 complexes in each zone) were created. Colonization of disturbed areas by vascular plants was observed during a 6-year period after the disturbance. The results showed that the recovery processes were affected by disturbance severity and that the recovery differed significantly among the communities. In all of the zones, species richness increased rapidly after mild disturbance. In degraded communities, levelling of differences in the rate of colonization after mild and severe disturbances was observed. The highest colonization rate was found in the communities of background zone, while the lowest was found in the heavily degraded communities of impact zone. The disturbances significantly increased the species diversity of communities in all zones and caused a certain reversion of degraded communities to previous stage of anthropogenic succession. Mild disturbance promoted the greatest increase in the diversity indices. The study results indicate that recovery rate of species richness of plant communities is determined by the duration of negative effect of disturbances. Recovery also depends significantly on the magnitude and endurance of positive effect of disturbances. The studied communities differed significantly in these parameters. The study results also suggest that short-term disturbances can significantly modify the process of transformation of plant communities by atmospheric pollution. On the other hand, long-term pollution can considerably modify the response of forest communities to disturbances. The results also conclude that the resilience of communities does not exclusively depend on their species richness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexeyev VA (ed) (1990) Lesnye ekosystemy i atmosfernoe zagryaznenie. Nauka, Leningrad

    Google Scholar 

  • Barik SK, Pandey HN, Tripathi RS, Rao P (1992) Microenvironmental variability and species-diversity in treefall gaps in a subtropical broadleaved forest. Vegetatio 103(1):31–40

    Google Scholar 

  • Bobbink R, Hornung M, Roelofs JGM (1998) The effect of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738. doi:10.1046/j.1365-2745.1998.8650717.x

    Article  CAS  Google Scholar 

  • Chernenkova TV (2002) Reaktsiya lesnoy rastitel’nosti na promyshlennoe zagryaznenie. Nauka, Moskow

    Google Scholar 

  • Cooper-Ellis S, Foster DR, Carlton G, Lezberg A (1999) Forest response to catastrophic wind: results from an experimental hurricane. Ecology 80(8):2683–2696

    Article  Google Scholar 

  • Falinski JB (1978) Uprooted trees, their distribution and influence in primeval forest biotope. Vegetatio 38(3):175–183. doi:10.1007/BF00123268

    Article  Google Scholar 

  • Forest DR, Knight DH, Franklin JF (1998) Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems (NY, Print) 1:497–510. doi:10.1007/s100219900046

    Article  Google Scholar 

  • Freedman B, Hutchinson TC (1980) Long-term effects of smelter pollution on forest community composition. Can J Bot 55(19):2123–2140

    Google Scholar 

  • Frelich LE, Reich PB (1999) Neighborhood effects, disturbance severity and community stability in forests. Ecosystems (NY, Print) 2:151–166. doi:10.1007/s100219900066

    Article  Google Scholar 

  • Georgievsky AB (1992) Faza okon v korennykh elovykh lesakh yuzhnoy taygi. Bot J 77(6):52–62

    Google Scholar 

  • Ginocchio R (2000) Effects of a copper smelter on a grassland community in the Puchuncavi Valley, Chile. Chemosphere 41:15–23. doi:10.1016/S0045-6535(99)00385-9

    Article  PubMed  CAS  Google Scholar 

  • Gol’dberg IL (1997) Changes in the moss layer of Southern taiga dark coniferous forests under conditions of technogenic pollution. Russ J Ecol 28(6):417–419

    Google Scholar 

  • Goldblum D (1997) The effects of treefall gaps on understory vegetation in New York state. J Veg Sci 8(1):125–132. doi:10.2307/3237250

    Article  Google Scholar 

  • Hautala H, Tolvanen A, Nuortila C (2001) Regeneration strategies of dominant boreal forest dwarf shrubs in response to selective removal of understorey layers. J Veg Sci 12:503–510. doi:10.2307/3237002

    Article  Google Scholar 

  • Hautala H, Tolvanen A, Nuortila C (2008) Recovery of pristine boreal forest floor community after selective removal of understorey, ground and humus layers. Plant Ecol 194:273–282. doi:10.1007/s11258-007-9290-0

    Article  Google Scholar 

  • Hooper DU, Chapin FSIII, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DF (2005) Effects of biodiversity on ecosystems functioning: consensus of current knowledge. Ecol Monogr 75(1):3–35. doi:10.1890/04-0922

    Article  Google Scholar 

  • Huopalainen M, Tuittila E-S, Vanha-Majamaa I, Nousiainen H, Laine J, Vasander H (2001) Effects of long-term aerial pollution on soil seed banks in drained pine mires in Southern Finland. Water Air Soil Pollut 125:69–79. doi:10.1023/A:1005276201740

    Article  CAS  Google Scholar 

  • Jonsson BG, Essen P-A (1998) Plant colonization in small forest-floor patches: importance of plant group and disturbance traits. Ecography 21:518–526. doi:10.1111/j.1600-0587.1998.tb00443.x

    Article  Google Scholar 

  • Kaigorodova SY, Vorobeichik EL (1996) Changes in certain properties of grey forest soil polluted with emissions from a copper-smelting plant. Russ J Ecol 27(3):177–183

    Google Scholar 

  • Kolesnikov BP, Zubareva RS, Smolonogov EP (1973) Lesorastitel’nye usloviya i lesnaya tipologiya Sverdlovskoy. UNC AN SSSR, Sverdlovsk

    Google Scholar 

  • Komulainen M, Vieno M, Yarmishko VT, Daletskaja TD, Maznaja EA (1994) Seedling establishment from seeds and seed banks in forests under long-term pollution stress: a potential for vegetation recovery. Can J Bot 72:143–149. doi:10.1139/b94-019

    Article  Google Scholar 

  • Kuuluvainen T (1994) Gap disturbance, ground microtopography and the regeneration dynamics of boreal coniferous forests in Finland: a review. Ann Zool Fenn 31(1):35–51

    Google Scholar 

  • Lavorel S (1999) Ecological diversity and resilience of Mediterranean vegetation to disturbance. Divers Distrib 5:3–13. doi:10.1046/j.1472-4642.1999.00033.x

    Article  Google Scholar 

  • Lee JA (1998) Unintentional experiments with terrestrial ecosystems: ecological effects of sulfur and nitrogen pollutants. J Ecol 86:1–12. doi:10.1046/j.1365-2745.1998.00257.x

    Article  CAS  Google Scholar 

  • Liechty HO, Jurgensen MF, Mroz GD, Gale MR (1997) Pit and mound topography and its influence on storage of carbon, nitrogen and organic matter within an old-growth forest. Can J Res 27(12):1992–1997. doi:10.1139/cjfr-27-12-1992

    Article  CAS  Google Scholar 

  • Lukina NV, Nikonov VV (1993) Sostoyanie elovykh biogeotzenozov Severa v uscloviyakh tekhnogennogo zagryazneniya. Kola Scientific Centre, Apatity

    Google Scholar 

  • Makhnev AK, Trubina MR, Pryamonosova SA (1990) Lesnaya rastitel’nost’ v okrestnostyakh predpriyatiy tsvetnoy metallurgii. In: Shiyatov SG, Shilova II (eds) Estestvennaya rastitel’nost’ promyshlennykh i urbanizirovannykh territoriy Urala. UD AS USSR, Sverdlovsk

    Google Scholar 

  • Mayer P, Abs C, Fischer A (2004) Colonization by vascular plants after soil disturbance in the Bavarian Forest—key factors and relevance for forest dynamics. For Ecol Manage 188:279–289

    Article  Google Scholar 

  • McNaughton SJ (1977) Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am Nat 111(979):515–525. doi:10.1086/283181

    Article  Google Scholar 

  • Meerts P, Grommesch C (2001) Soil seed banks in heavy-metal polluted grassland at Prayon (Belgium). Plant Ecol 155:35–45. doi:10.1023/A:1013234418314

    Article  Google Scholar 

  • Nakashizuka T (1989) Role of uprooting in composition and dynamics of an old-growth forest in Japan. Ecology 70(5):1273–1278. doi:10.2307/1938186

    Article  Google Scholar 

  • Peterson CJ, Campbell JE (1993) Microsite differences and temporal change in plant-communities of treefall pit and mounds in an old-growth forest. Bull Torrey Bot Club 120(4):451–460. doi:10.2307/2996750

    Article  Google Scholar 

  • Peterson CJ, Pickett STA (1995) Forest reorganization—a case-study in old-growth forest catastrophic blowdown. Ecology 76(3):763–774. doi:10.2307/1939342

    Article  Google Scholar 

  • Peterson CJ, Carson WC, McCarthy BC, Pickett STA (1990) Microsite variation and soil dynamics within newly created treefall pits and mounds. Oikos 58(1):39–46. doi:10.2307/3565358

    Article  Google Scholar 

  • Peterson G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems (NY, Print) 1:6–18. doi:10.1007/s100219900002

    Article  Google Scholar 

  • Prokaev VI (1976) Fiziko-geograficheskoe rayonirovanie Sverdlovskoy oblasti. Part 1. Sverdlovsk State Pedagogical Institute, Sverdlovsk

    Google Scholar 

  • Putz FE (1983) Treefall pits and mounds, buried seeds, and the importance of soil disturbance to pioneer trees on Barro Colorado Island, Panama. Ecology 64(5):1069–1074. doi:10.2307/1937815

    Article  Google Scholar 

  • Rydgren K, Økland RH, Hestmark G (2004) Disturbance severity and community resilience in a boreal forest. Ecology 85(7):1906–1915. doi:10.1890/03-0276

    Article  Google Scholar 

  • Salemaa M, Uotila T (2001) Seed bank composition and seedling survival in forest soil polluted with heavy metals. Basic Appl Ecol 2:251–263. doi:10.1078/1439-1791-00055

    Article  CAS  Google Scholar 

  • Salemaa M, Vanha-Majamaa I, Derome J (2001) Understory vegetation along a heavy-metal pollution gradient in SW Finland. Environ Pollut 112:339–350. doi:10.1016/S0269-7491(00)00150-0

    Article  PubMed  CAS  Google Scholar 

  • Sannikov SN (1992) Ekologiya i geografiya estestvennogo vozobnovleniya sosny obyknovennoy. Nauka, Moscow

    Google Scholar 

  • Skvortsova EB, Ulanova NG, Basevich BF (1983) Ekologichskaya rol’ vetrovalov. Forestry Industry, Moscow

    Google Scholar 

  • Smith YK (1985) Les i atmosfera. Progress, Moscow

    Google Scholar 

  • Stepanov AM (ed) (1992) Kompleksnaya ekologicheskaya otsenka tekhnogennogo vozdeystviya na ekosistemy yuzhnoy taygi. TsEPL, Moskow

    Google Scholar 

  • Sydes C, Grime TP (1981a) Effects of tree leaf litter on herbaceous vegetation in deciduous woodland. 1. Field investigations. J Ecol 69(1):237–248. doi:10.2307/2259828

    Article  Google Scholar 

  • Sydes C, Grime TP (1981b) Effects of tree leaf litter on herbaceous vegetation in deciduous woodland. 2. An experimental investigation. J Ecol 69(1):249–262. doi:10.2307/2259829

    Article  Google Scholar 

  • Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature 367:363–365. doi:10.1038/367363a0

    Article  Google Scholar 

  • Trubina MR (2003) Kolichestvennye pokasateli iskusstvenno narushennykh uchastkov temnokhvoynykh lesov na nachal’nykh stadiyakh vosstanovitel’nykh mikrosuktzessiy v usloviyakh zagryazneniya. In: Mamaev SA, Makhnev AK, Chibrik TS (eds) Biologicheskaya rekul’tivatsiya narushennykh zemel’. Ural Division of Russian Academy of Science, Ekaterinburg

    Google Scholar 

  • Trubina MR, Makhnev AK (1997) Dynamics of ground vegetation in forest phytocenoses under conditions of chronic pollution by fluorine. Russ J Ecol 28(2):73–77

    Google Scholar 

  • Turner MG, Baker WL, Peterson CJ, Peet RK (1998) Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems (NY, Print) 1:511–523. doi:10.1007/s100219900047

    Article  Google Scholar 

  • Ulanova NG (2000) The effects of windthrow on forests at different spatial scales: a review. For Ecol Manage 135:155–167

    Article  Google Scholar 

  • Vorobeichik EL (1995) Change of thickness of forest litter under chemical pollution. Russ J Ecol 26(4):252–258

    Google Scholar 

  • Vorobeichik EL, Hantemirova EV (1994) Reaction of forest phytocenoses to technogenic pollution: dose-effect dependencies. Russ J Ecol 25:171–180

    Google Scholar 

  • Vorobeichik EL, Sadykov OF, Farafontov MG (1994) Ecologicheskoe normirovanie tekhnogennykh zagryaznenii nazemnykh ekosistem (lokal’nyi uroven’). Nauka, Ekaterinburg

    Google Scholar 

  • Weltzin JF, Keller JK, Bridgham SD, Pastor J, Allen PB, Chen J (2005) Litter controls plant community composition in a northern fen. Oikos 110:537–546. doi:10.1111/j.0030-1299.2005.13718.x

    Article  Google Scholar 

  • Whitford WG, Rapport DJ, Soyza AG (1999) Using resistance and resilience measurements for ‘fitness’ tests in ecosystem health. J Environ Manage 57:21–29. doi:10.1006/jema.1999.0287

    Article  Google Scholar 

  • Xiong S, Nilsson C (1999) The effects of plant litter on vegetation: a meta-analysis. J Ecol 87:984–994. doi:10.1046/j.1365-2745.1999.00414.x

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to Sergey Kartavov for his help in the creation of the experimental plots, and Irina Mikhailova and Harri Hautala for revising the English of the manuscript. This study was completed under the financial support of the Russian Foundation for Basic Research (project no. 08-04-91766-AF) and the program of the Russian Academy of Sciences “Biodiversity and dynamics of genofunds” (project “Biodiversity changes and mechanisms of the terrestrial ecosystems’ resistance along toxic load gradients”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina R. Trubina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trubina, M.R. Species richness and resilience of forest communities: combined effects of short-term disturbance and long-term pollution. Plant Ecol 201, 339–350 (2009). https://doi.org/10.1007/s11258-008-9558-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-008-9558-z

Keywords

Navigation