Skip to main content

Advertisement

Log in

Short-term signals of climate change along an altitudinal gradient in the South Alps

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Short-term changes in plant species number, frequency and composition were studied along an altitudinal gradient crossing four summits from the treeline ecotone to the subnival zone in the South Alps (Dolomites, Italy). Large-scale (summit areas) and small-scale patterns (16 plots of 1 m²/summit) were monitored. After 5 years, a re-visitation of the summit areas revealed a considerable increase of species richness at the upper alpine and subnival zone (10% and 9%, respectively) and relatively modest increases at the lower alpine zone and the treeline ecotone (3% and 1%, respectively). At the small scale, the results were partly different, with species richness decreasing at the lower summits and increasing at the higher summits. The changes can most likely be attributed to climate warming effects and to competitive interactions. The main newcomers at the lower three summits were species from the treeline and the lower altitudinal zones. Only at the highest summit, the newcomers came from the alpine species pool. At the treeline ecotone, the abundance of Pinus cembra, of dwarf shrubs and clonal graminoid species increased. Here, displacements of alpine species may be predicted for the near future. At the higher summits, expansions of the established alpine species and further invasions of species from lower altitudes are forecasted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine K, Lévesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Totland Ø, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA (1999) Responses of tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecol Monogr 69:491–511

    Google Scholar 

  • Bahn M, Körner C (2003) Recent increases in summit flora caused by warming in the Alps. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Ecological Studies 167. Springer, Berlin, pp 437–441

  • Beniston M, Rebetez M, Giorgi F, Marinucci MR (1994) An analysis of regional climate change in Switzerland. Theor Appl Climatol 49:135–159. doi:10.1007/BF00865530

    Article  Google Scholar 

  • Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801. doi:10.1002/joc.689

    Article  Google Scholar 

  • Bosellini A (1998) Geologie der Dolomiten. Verlagsanstalt Athesia, Bozen

    Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848. doi:10.1038/nature00812

    Article  PubMed  CAS  Google Scholar 

  • Camenisch M, Schütz M (2000) Temporal and spatial variability of the vegetation in a four-year exclosure experiment in Val Trupchun (Swiss National Park). In: Schütz M, Krüsi PO, Edwards PJ (eds) Succession research in the Swiss National Park. Nationalpark-Forschung in der Schweiz, Nr. 89. Swiss Federal Research Institute WSL, Zernez, pp 165–188

    Google Scholar 

  • Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880. doi:10.1002/joc.1216

    Article  Google Scholar 

  • Chapin FS III, Körner C (1995) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological Studies 113. Springer, Berlin

  • Chapin FS III, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping C-L, Tape KD, Thompson CDC, Walker DA, Welker JM (2005) Role of land-surface changes in arctic summer warming. Science 310:657–660. doi:10.1126/science.1117368

    Article  PubMed  CAS  Google Scholar 

  • Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308

    Article  Google Scholar 

  • Dierschke H (2005) Laurophyllisation—auch eine Erscheinung im nördlichen Mitteleuropa? Zur aktuellen Ausbreitung von Hedera helix in sommergrünen Laubwäldern. Ber Reinhold-Tuxen-Ges 17:151–168

    Google Scholar 

  • Dirnböck T, Dullinger S, Grabherr G (2003) A regional impact assessment of climate change and land-use change on alpine vegetation. J Biogeogr 30:401–417

    Article  Google Scholar 

  • Dobbertin M, Hilker N, Rebetez M, Zimmermann NE, Wohlgemuth T, Rigling A (2005) The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland the result of climate warming. Int J Biometeorol 50:40–47. doi:10.1007/s00484-005-0263-5

    Article  PubMed  Google Scholar 

  • Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. J Ecol 92:241–252. doi:10.1111/j.0022-0477.2004.00872.x

    Article  Google Scholar 

  • Erschbamer B (2004) Dolomiten. In: Burga CA, Klötzli F, Grabherr G (eds) Gebirge der Erde. Landschaft, Klima, Pflanzenwelt. Ulmer, Stuttgart, pp 84–92

    Google Scholar 

  • Erschbamer B (2007) Winners and loser of climate change in a central alpine glacier foreland. AAAR 39:237–244

    Google Scholar 

  • Erschbamer B, Mallaun M, Unterluggauer P (2003) Die Dolomiten—hot spots der Artenvielfalt. Gredleriana 3:361–376

    Google Scholar 

  • Erschbamer B, Mallaun M, Unterluggauer P (2006) Plant diversity along altitudinal gradients in the Southern and Central Alps of South Tyrol and Trentino (Italy). Gredleriana 6:1–22

    Google Scholar 

  • Erschbamer B, Niederfriniger Schlag R, Winkler E (2008) Colonization processes on a central Alpine glacier foreland. J Veg Sci 19:855–862

    Google Scholar 

  • Fischer MA, Adler W, Oswald K (2005) Exkursionsflora für Österreich, Liechtenstein und Südtirol. Land Oberösterreich, OÖ Landesmuseen, Linz

  • Forbis TA (2003) Seedling demography in an alpine ecosystem. Am J Bot 90:1197–1206. doi:10.3732/ajb.90.8.1197

    Article  Google Scholar 

  • Gottfried M, Pauli H, Grabherr G (1994) Die Alpen im “Treibhaus”: Nachweise für das erwärmungsbedingte Höhersteigen der alpinen und nivalen Vegetation. Jahrb Ver Schutz Bergwelt 59:13–27

    Google Scholar 

  • Gottfried M, Pauli H, Reiter K, Grabherr G (2002) Potential effects of climate change on alpine and nival plants in the Alps. In: Körner C, Spehn EM (eds) Mountain biodiversity—a global assessment. Parthenon Publishing, London, pp 213–223

    Google Scholar 

  • Grabherr G (1989) On community structure in high alpine grasslands. Vegetatio 83:223–227. doi:10.1007/BF00031694

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448. doi:10.1038/369448a0

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Gruber A, Pauli H (1995) Patterns and current changes in alpine plant diversity. In: Chapin FS III, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological Studies 113. Springer, Berlin, pp 167–181

  • Grabherr G, Gottfried M, Pauli H (2000) Hochgebirge als “hot spots” der Biodiversität - dargestellt am Beispiel der Phytodiversität. Ber Reinhold-Tuxen-Ges 12:101–112

    Google Scholar 

  • Guisan A, Theurillat JP (2000) Assessing alpine plant vulnerability to climate change: a modelling perspective. Integr Assess 1:307–320. doi:10.1023/A:1018912114948

    Article  Google Scholar 

  • Guisan A, Holten JI, Spichiger R, Tessier L (1995) Potential ecological impacts of climate change in the Alps and Fennoscandian Mountains. Imprimerie Nationale, Genève

    Google Scholar 

  • Hofer HR (1992) Veränderungen in der Vegetation von 14 Gipfeln des Berninagebietes zwischen 1905 und 1985. Ber Geobot Inst ETH. Stift Rubel 58:39–54

    Google Scholar 

  • Holtmeier F-K, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410. doi:10.1111/j.1466-822X.2005.00168.x

    Article  Google Scholar 

  • Holzinger B, Hülber K, Camenisch M, Grabherr G (2008) Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol 195:179–196. doi:10.1007/s11258-007-9314-9

    Article  Google Scholar 

  • Huelber K, Gottfried M, Pauli H, Reiter K, Winkler M, Grabherr G (2006) Phenological responses of snowbed species to snow removal dates in the Central Alps: implications for climate warming. AAAR 38:99–103

    Google Scholar 

  • IPCC, Intergovernmental Panel of Climate Change (2007) Climate change 2007: the physical science basis. Summary for policymakers. IPCC Secretariat, Geneva

    Google Scholar 

  • Kammer PM (1997) Räumliche, zeitliche und witterungsbedingte Variabilität eines Trespen-Halbtrockenrasens (Mesobromion) im Schweizer Mittelland. Ein Beitrag zur Methodik der Dauerflächenbeobachtung. Diss Bot 272:1–255

    Google Scholar 

  • Kapralov DS, Shiyatov SG, Moiseev PA, Fomin VV (2006) Changes in the composition, structure, and altitudinal distribution of low forests at the upper limit of their growth in the northern Ural Mountains. Russ J Ecol 6:367–372. doi:10.1134/S1067413606060014

    Article  Google Scholar 

  • Kazakis G, Ghosn D, Vogiatzakis IN, Papanastasis VP (2006) Vascular plant diversity and climate change in the alpine zone of the Lefka Ori, Crete. Biodivers Conserv 16:1603–1615. doi:10.1007/s10531-006-9021-1

    Article  Google Scholar 

  • Keller F, Kienast F, Beniston M (2000) Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Reg Environ Chang 1:70–77. doi:10.1007/PL00011535

    Article  Google Scholar 

  • Klanderud K, Birks HJB (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 13:1–6. doi:10.1191/0959683603hl589ft

    Article  Google Scholar 

  • Klanderud K, Totland Ø (2005) Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology 86:2047–2054. doi:10.1890/04-1563

    Article  Google Scholar 

  • Körner C (1992) Response of alpine vegetation to global climate change. Catena Suppl 22:85–96

    Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459. doi:10.1007/s004420050540

    Article  Google Scholar 

  • Kudernatsch T, Fischer A, Bernhardt-Römermann M, Abs C (2008) Short-term effects of temperature enhancement on growth and reproduction of alpine grassland species. Basic App Ecol 9:263–274

    Google Scholar 

  • Kullman L (2007) Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: implications for tree line theory and climate change ecology. J Ecol 95:41–52. doi:10.1111/j.1365-2745.2006.01190.x

    Article  Google Scholar 

  • Lambrecht SC, Loik ME, Inouye DW, Harte J (2006) Reproductive and physiological responses to simulated climate warming for four subalpine species. New Phytol 173:121–134. doi:10.1111/j.1469-8137.2006.01892.x

    Article  CAS  Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    Article  PubMed  CAS  Google Scholar 

  • Leonardi P (1967) Le Dolomiti. Geologia dei monti tra Isarco e Piave, 3 vol. Trento

  • Marcante M, Kiebacher T, Erschbamer B (2008) Reproductive responses of glacier foreland species to simulated climate change. Coll Phytosoc (in press)

  • Moiseev PA, Shiyatov SG (2003) Vegetation dynamics at the treeline ecotone in the Ural highlands, Russia. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Ecological Studies 167. Springer, Berlin, pp 423–435

  • Molau U (1996) Phenology and reproductive success in arctic plants: susceptibility to climate change. In: Oechel WC, Callaghan T, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and Arctic terrestrial ecosystems. Ecological Studies 124. Springer, New York, pp 153–170

  • Molau U (2000) Tundra plant responses to experimental and natural temperature changes. Mem Natl Inst Polar Res 54(special issue):445–466

    Google Scholar 

  • Molau U, Mølgaard P (1996) ITEX manual, 2nd edn. Danish Polar Center, Copenhagen

    Google Scholar 

  • Nadelhoffer KJ, Shaver GR, Giblin A, Rastetter EB (1996) Potential impacts of climate change on nutrient cycling, decomposition, and productivity in arctic ecosystems. In: Oechel WC, Callaghan T, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and Arctic terrestrial ecosystems. Ecological Studies 124. Springer, New York, pp 349–364

  • Panikov NS (1996) A kinetic approach to microbial ecology in arctic and boreal ecosystems in relation to global change. In: Oechel WC, Callaghan T, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and Arctic terrestrial ecosystems. Ecological Studies 124. Springer, New York, pp 171–188

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    Article  PubMed  CAS  Google Scholar 

  • Parolo G, Rossi G (2008) Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl Ecol 9:100–107. doi:10.1016/j.baae.2007.01.005

    Article  Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (1996) Effects of climate change on mountain ecosystems—upward shifting of alpine plants. World Resour Rev 8:382–390

    Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (2001a) High summits of the Alps in a changing climate. In: Walther GR, Burga CA, Edwards PJ (eds) “Fingerprints” of climate change. Kluwer, New York, pp 139–149

    Google Scholar 

  • Pauli H, Gottfried M, Hohenwallner D, Hülber K, Reiter K, Grabherr G (2001b) Gloria—the multi-summit approach. Field manual, 2nd draft version, Vienna

  • Pauli H, Gottfried M, Dirnböck T, Dullinger S, Grabherr G (2003) Assessing the long-term dynamics of endemic plants at summit habitats. In: Nagy L, Grabherr G, Körner CH, Thompson DBA (eds) Alpine biodiversity in Europe. Springer, Berlin, pp 195–207

    Google Scholar 

  • Pauli H, Gottfried M, Hohenwallner D, Reiter K, Casale R, Grabherr G (2004) The GLORIA field manual multi-summit approach. DG Research European Commission, EUR 21213

  • Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob Chang Biol 13:147–156. doi:10.1111/j.1365-2486.2006.01282.x

    Article  Google Scholar 

  • Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Chang Biol 9:131–140. doi:10.1046/j.1365-2486.2003.00566.x

    Article  Google Scholar 

  • Rabotnov TA (1995) Phytozönologie. Ulmer, Stuttgart

    Google Scholar 

  • Rossi G, Parolo G (2005) Gli effetti dei cambiamenti climatici sulle specie vascolari degli ambienti di alta quota: i casi-studio di Alpi Retiche e dell’Appennino settentrionale. Inf Bot Ital 37:238–239

    Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sannwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770

    Article  PubMed  CAS  Google Scholar 

  • Sandvik SM, Totland Ø (2000) Short-term effects of simulated environmental changes on phenology, reproduction, and growth in the late-flowering snowbed herb Saxifraga stellaris L. Ecoscience 7:201–213

    Google Scholar 

  • Stampfli A (1992) Year-to-year changes in unfertilized meadows of great species richness detected by point quadrat analysis. Vegetatio 103:125–132

    Google Scholar 

  • Stanisci A, Pelino G, Blasi C (2005) Vascular plant diversity and climate change in the alpine belt of the central Apennines (Italy). Biodivers Conserv 14:1301–1318. doi:10.1007/s10531-004-9674-6

    Article  Google Scholar 

  • Ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and user’s guide to Canoco for Windows. Centre of Biometry, Wageningen

    Google Scholar 

  • Theurillat J-P (1995) Climate change and the alpine flora: some perspectives. In: Guisan A, Holten JI, Spichiger R, Tessier L (eds) Potential ecological impacts of climate change in the Alps and Fennoscandian mountains. Conservatoire Jardin Botanique, Genève, pp 121–127

    Google Scholar 

  • Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Chang 50:77–109. doi:10.1023/A:1010632015572

    Article  CAS  Google Scholar 

  • Vardabasso S (1930) Carta geologica del territorio eruttivo di Predazzo e Monzoni nelle Dolomiti di Fiemme e Fassa. 1:25.000. R. Scuola d’Ingeneria Padova

  • Virtanen R, Eskelinen A, Gaare E (2003) Long-term changes in alpine plant communities in Norway and Finland. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Ecological Studies 167. Springer, Berlin, pp 411–421

  • Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdottir IS, Kein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–1346. doi:10.1073/pnas.0503198103

    Article  PubMed  CAS  Google Scholar 

  • Walther G-R (2003) Plants in a warmer world. Perspect Plant Ecol Evol Syst 6:169–185. doi:10.1078/1433-8319-00076

    Article  Google Scholar 

  • Walther G-R, Carraro G, Klötzli F (2001) Evergreen broad-leaved species as indicators for climate change. In: Walther GR, Burga CA, Edwards PJ (eds) “Fingerprints” of climate change. Kluwer, New York, pp 151–162

    Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a

    Article  PubMed  CAS  Google Scholar 

  • Walther G-R, Beißner S, Burga CA (2005a) Trends in the upward shift of alpine plants. J Veg Sci 16:542–548. doi:10.1658/1100-9233(2005)16[541:TITUSO]2.0.CO;2

    Article  Google Scholar 

  • Walther G-R, Berger S, Sykes MT (2005b) An ecological ‘footprint’ of climate change. Proc R Soc Lond B 272:1427–1432. doi:10.1098/rspb.2005.3119

    Article  Google Scholar 

  • Wieser G (2002) The role of sapwood temperature variations within Pinus cembra on calculated stem respiration: implications for upscaling and predicted global warming. Phyton 42:1–11

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the GLORIA-EU project no EVK2-CT-2000-00056 (2001-2003), the Abteilung Forstwirtschaft der Autonomen Provinz Bozen-Südtirol (2006) and the Tiroler Wissenschaftsfonds (2006). We would like to thank Georg Grabherr and the GLORIA co-ordination group for project supervision and database handling. We are grateful to one anonymous reviewer for highly valuable comments, to Eckart Winkler for statistical advice and to Harald Pauli and Michael Gottfried for their comments on an earlier version of this manuscript. Special thanks to Michael Hess for linguistic corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitta Erschbamer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erschbamer, B., Kiebacher, T., Mallaun, M. et al. Short-term signals of climate change along an altitudinal gradient in the South Alps. Plant Ecol 202, 79–89 (2009). https://doi.org/10.1007/s11258-008-9556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-008-9556-1

Keywords

Navigation