Skip to main content

Advertisement

Log in

What is the impact of immunosuppressive treatment on the post-transplant renal osteopathy?

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Although glucocorticoid therapy is considered to be the main pathogenic factor, a consistent body of evidence suggests that other immunosuppressants might also play an important role in the development of the post-transplant renal osteopathy (PRO) through their pleiotropic pharmacological effects. Glucocorticoids seem to induce osteoclasts’ activity suppressing the osteoblasts while data regarding other immunosuppressive drugs are still controversial. Mycophenolate mofetil and azathioprine appear to be neutral regarding the bone metabolism. However, the study analyzing any independent effect of antimetabolites on bone turnover has not been conducted yet. Calcineurin inhibitors (CNIs) induce trabecular bone loss in rodent, with contradictory results in renal transplant recipients. Suppression of vitamin D receptor is probably the underlying mechanism of renal calcium wasting in renal transplant recipients receiving CNI. In spite of an increased 1,25(OH)2 vitamin D level, the kidney is not able to reserve calcium, suggesting a role of vitamin D resistance that may be related to bone loss. More efforts should be invested to determine the role of CNI in PRO. In particular, data regarding the role of mammalian target of rapamycin inhibitors (mTORi), such as sirolimus and everolimus, in the PRO development are still controversial. Rapamycin markedly decreases bone longitudinal growth as well as callus formation in experimental models, but also lowers the rate of bone resorption markers and glomerular filtration in clinical studies. Everolimus potently inhibits primary mouse and human osteoclast activity as well as the osteoclast differentiation. It also prevents the ovariectomy-induced loss of cancellous bone by 60 %, an effect predominantly associated with a decreased osteoclast-mediated bone resorption, resulting in a partial preservation of the cancellous bone. At present, there is no clinical study analyzing the effect of everolimus on bone turnover in renal transplant recipients or comparing sirolimus versus everolimus impact on bone, so only general conclusions could be drawn. Hence, the use of mTORi might be useful in patients with PRO due to their possible potential to inhibit osteoclast activity which might lead to a decreased rate of bone resorption. In addition, it should be also emphasized that they might inhibit osteoblast activity which may lead to a decreased bone formation and adynamic bone disease. Further studies are urgently needed to solve these important clinical dilemmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Disease Kidney (2009) Improving Global Outcomes (KDIGO) CKD-MBD Work Group. Kidney Int Suppl 113:S1–S130

    Google Scholar 

  2. Grotz WH, Mundinger FA, Rasenack J et al (1995) Bone loss after kidney transplantation (A longitudinal study in 115 graft recipients). Nephrol Dial Transplant 10:2096

    CAS  PubMed  Google Scholar 

  3. Nisbeth U, Lindh E, Ljunghall S et al (1994) Fracture frequency after kidney transplantation. Transplant Proc 26:1764

    CAS  PubMed  Google Scholar 

  4. Mitterbauer C, Oberbauer R (2008) Bone disease after kidney transplantation. Transplant Int 21:615–624

    Article  Google Scholar 

  5. Sessa A, Esposito GD, Iavicoli E et al (2010) Immunosuppressive agents and bone disease in renal transplant patients with hypercalcemia. Transplant Proc 42:1148–1155

    Article  CAS  PubMed  Google Scholar 

  6. O’Shaughnessy EA, Dahl DC, Smith CL, Kasiske BL (2002) Risk factors for fractures in kidney transplantation. Transplantation 74:362–366

    Article  PubMed  Google Scholar 

  7. Bozkaya G, Nart A, Uslu A, Onman T, Aykas A, Doğan M, Karaca B (2008) Impact of calcineurin inhibitors on bone metabolism in primary kidney transplant patients. Transplant Proc 40(1):151–155

    Article  CAS  PubMed  Google Scholar 

  8. Patel S, Kwan JTC, McCloskey E et al (2001) Prevalence and causes of low bone density and fractures in kidney transplant patients. J Bone Miner Res 16:1863–1870

    Article  CAS  PubMed  Google Scholar 

  9. Endorsement of the Kidney Disease Improving Global Outcomes (2010) (KDIGO) chronic kidney disease-mineral and bone disorder (CKD-MBD) Guidelines: a European renal best practice (ERBP) commentary statement. Nephrol Dial Transplant 25(12):3823–3831

    Article  Google Scholar 

  10. McIntyre HD, Menzies B, Rigby R et al (1995) Long-term bone loss after renal transplantation: comparison of immunosuppressive regimens. Clin Transplant 9:20–24

    CAS  PubMed  Google Scholar 

  11. Heaf JG (2003) Bone disease after renal transplantation. Transplantation 75(3):315–325

    Article  PubMed  Google Scholar 

  12. Weisinger JR, Carlini RG, Rojas E, Bellorin-Font E (2006) Bone disease after renal transplantation. CJASN 1(6):1300–1313

    CAS  PubMed  Google Scholar 

  13. Ferreira A (2006) Development of renal bone disease. Eur J Clin Invest 36(Suppl 2):2–12

    Article  CAS  PubMed  Google Scholar 

  14. Evenepoel P, Claes K, Kuypers D et al (2004) Natural history of parathyroid function and calcium metabolism after kidney transplantation: a single-centre study. Nephrol Dial Transplant 19:1281–1287

    Article  CAS  PubMed  Google Scholar 

  15. Rojas E, Carlini RG, Clesca P et al (2003) The pathogenesis of osteodystrophy after renal transplantation as detected by early alterations in bone remodeling. Kidney Int 63:1915–1923

    Article  PubMed  Google Scholar 

  16. Navaneethan SD, Sankarasubbaiyan S, Gross MD, Jeevanantham V, Monk RD (2006) Tacrolimus-associated hypomagnesemia in renal transplant recipients. Transplant Proc 38(5):1320–1322

    Article  CAS  PubMed  Google Scholar 

  17. Rude RK, Singer FR, Gruber HE (2009) Skeletal and hormonal effects of magnesium deficiency. J Am Coll Nutr 28:131–141

    Article  CAS  PubMed  Google Scholar 

  18. Tucker KL (2009) Osteoporosis prevention and nutrition. Curr Osteoporos Rep 7:111–117

    Article  PubMed  Google Scholar 

  19. Mutlu M, Argun M, Kilic E, Saraymen R, Yazar S (2007) Magnesium, zinc and copper status in osteoporotic, osteopenic and normal post-menopausal women. J Int Med Res 35:692–695

    Article  CAS  PubMed  Google Scholar 

  20. Cunningham J (2005) Posttransplantation bone disease. Transplantation 79:629–634

    Article  PubMed  Google Scholar 

  21. Sadideen H, Covic A, Goldsmith D (2008) Mineral and bone disorder after renal transplantation: a review. Int Urol Nephrol 40(1):171–184

    Article  CAS  PubMed  Google Scholar 

  22. Epstein S (1996) Post-transplantation bone disease: the role of immunosuppressive agents and the skeleton. J Bone Miner Res 11:1–7

    Article  CAS  PubMed  Google Scholar 

  23. Stewart PJ, Stern PH (1989) Cyclosporines: correlation of immunosuppressive activity and inhibition of bone resorption. Calcif Tissue Int 45:222–226

    Article  CAS  PubMed  Google Scholar 

  24. Stewart PJ, Stern PH (1989) Interaction of cyclosporine A and calcitonin on bone resorption in vitro. Horm Metab Res 21:194–197

    Article  CAS  PubMed  Google Scholar 

  25. Awumey EM, Moonga BS, Sodam BR et al (1999) Molecular and functional evidence for calcineurin-A alpha and beta isoforms in the osteoclast: novel insights into cyclosporin A action on bone resorption. Biochem Biophys Res Commun 254:248–252

    Article  CAS  PubMed  Google Scholar 

  26. Buchinsky FJ, Ma Y, Mann GN et al (1996) T lymphocytes play a critical role in the development of cyclosporin A-induced osteopenia. Endocrinology 137:2278–2285

    CAS  PubMed  Google Scholar 

  27. Ponticelli C, Aroldi A (2001) Osteoporosis after organ transplantation. Lancet 357:1623–1624

    Article  CAS  PubMed  Google Scholar 

  28. Grotz W, Mundinger A, Gugel B et al (1994) Missing impact of cyclosporine on osteoporosis in renal transplant recipients. Transplant Proc 26:2652–2653

    CAS  PubMed  Google Scholar 

  29. Monegal A, Navasa M, Guanabens N et al (2001) Bone mass and mineral metabolism in liver transplant patients treated with FK506 or cyclosporine A. Calcif Tissue Int 68:83–86

    Article  CAS  PubMed  Google Scholar 

  30. Lee CT, Ng HY, Lien YH, Lai LW, Wu MS, Lin CR, Chen HC (2011) Effects of cyclosporine, tacrolimus and rapamycin on renal calcium transport and vitamin D metabolism. Am J Nephrol 34(1):87–94

    Article  CAS  PubMed  Google Scholar 

  31. Yip CK, Murata K, Walz T, Sabatini DM, Kang SA (2010) Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell 38(5):768–774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    Article  CAS  PubMed  Google Scholar 

  33. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189

    Article  CAS  PubMed  Google Scholar 

  34. Manning BD (2004) Balancing Akt with S6 K: implications for both metabolic diseases and tumorigenesis. J Cell Biol 167:399–403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, Gray NS, Sabatini DM (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137:873–886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356

    Article  CAS  PubMed  Google Scholar 

  37. Hernandez D, Martinez D, Gutierrez E et al (2011) Clinical evidence on the use of anti-mTOR drugs in renal transplantation. Nefrologia 31(1):27–34

    CAS  PubMed  Google Scholar 

  38. MacDonald AS (2001) A worldwide, phase III, randomised, controlled, safety and efficacy study of sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. The Rapamune Global Study Group. Transplantation 71:271–280

    Article  CAS  PubMed  Google Scholar 

  39. Kuypers DR (2005) Benefit-risk assessment of sirolimus in renal transplantation. Drug Saf 28(2):153–181

    Article  CAS  PubMed  Google Scholar 

  40. Flechner SM, Kobashigawa J, Klintmalm G (2008) Calcineurin inhibitor-sparing regimens in solid organ transplantation: focus on improving renal function and nephrotoxicity. Clin Transplant 22(1):1–15

    PubMed  Google Scholar 

  41. Schuler W, Sedrani R, Cottens S et al (1997) SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation 64(1):36–42

    Article  CAS  PubMed  Google Scholar 

  42. Vítko S, Margreiter R, Weimar W et al (2005) Three-year efficacy and safety results from a study of everolimus versus mycophenolate mofetil in de novo renal transplant patients. Am J Transplant 5(10):2521–2530

    Article  PubMed  Google Scholar 

  43. Lorber MI, Mulgaonkar S, Butt KM et al (2005) Everolimus versus mycophenolate mofetil in the prevention of rejection in de novo renal transplant recipients: a 3-year randomized, multicenter, phase III study. Transplantation 80(2):244–252

    Article  CAS  PubMed  Google Scholar 

  44. Morales J, Fierro A, Benavente D et al (2007) Conversion from a calcineurin inhibitor-based immunosuppressive regimen to everolimus in renal transplant recipients: effect on renal function and proteinuria. Transplant Proc 39(3):591–593

    Article  CAS  PubMed  Google Scholar 

  45. Rostaing L, Kamar N (2010) mTOR inhibitor/proliferation signal inhibitors: entering or leaving the field? J Nephrol 23(2):133–142

    CAS  PubMed  Google Scholar 

  46. Alvarez-Garcia O, Carbajo-Pe′rez E, Garcia E et al (2007) Rapamycin retards growth and causes marked alterations in the growth plate of young rats. Pediatr Nephrol 22:954–961

    Article  PubMed  Google Scholar 

  47. Holstein JH, Klein M, Garcia P (2008) Rapamycin affects early fracture healing in mice. Br J Pharmacol 154(5):1055–1062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  CAS  PubMed  Google Scholar 

  49. Alvarez-Garcia O, Garcia-Lopez E, Lored V (2010) Rapamycin induces growth retardation by disrupting angiogenesis in the growth plate. Kidney Int 78:561–568

    Article  CAS  PubMed  Google Scholar 

  50. Kneissel M, Luong-Nguyen NH, Baptist M (2004) Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone 35(5):1144–1156

    Article  CAS  PubMed  Google Scholar 

  51. Campistol JM, Holt DW, Epstein S (2005) Bone metabolism in renal transplant patients treated with cyclosporine or sirolimus. Transplant Int 18(9):1028–1035

    Article  CAS  Google Scholar 

Download references

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolina Basic-Jukic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaslov, K., Katalinic, L., Kes, P. et al. What is the impact of immunosuppressive treatment on the post-transplant renal osteopathy?. Int Urol Nephrol 46, 1019–1024 (2014). https://doi.org/10.1007/s11255-013-0596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-013-0596-7

Keywords

Navigation