Skip to main content
Log in

The matrix affects carabid beetle assemblages in linear urban ruderal habitats

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Matrix contrasts affect communities in patchy landscapes by influencing resources, abiotic conditions and spill-over effects. However, current knowledge is significantly biased towards forest and rural communities. We examined the effects of three different matrix types, i.e., low, intermediate and high contrasts, on carabid beetle assemblages at urban railway verges in two climatic regions. Study sites were located in Finland and in Slovenia. Using pitfall trapping, non-metric multidimensional scaling and generalised linear mixed models, we investigated carabid assemblages at railway verges and in differently contrasting adjacent matrices, i.e. built-up, grassland and forest. The matrix influenced carabid assemblages at railway verges. Assemblages grouped with adjacent matrix types, although some Finnish railway assemblages included a characteristic set of open dry habitat species. Abundances of generalist species at railway verges were higher when next to grassland or forest than urban matrices. Habitat specialists responded negatively to high contrast matrices, resulting in lower abundances of open habitat specialists in railway verges when next to forests and nearly no spill-over of forest specialists into railway verges. These patterns were consistent in both countries, i.e. irrespective of climatic region. Our study emphasises effects of the adjacent matrix and matrix contrasts on communities in linear open habitat patches in cities. Knowledge on matrix effects in patchy landscapes, such as urban environments, is essential in understanding the distribution and composition of communities in discrete patches. This knowledge can be used in conservation planning. If habitat specialists are negatively affected by high matrix contrasts, high contrasts should be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R Packag Version 1:1–7 http://CRAN.R-project.org/package=lme4. Accessed 21 March 2016

    Google Scholar 

  • Brearley G, Bradley A, Bell S, McAlpine G (2010) Influence of contrasting urban edges on the abundance of arboreal mammals: a study of squirrel gliders (Petaurus norfolcensis) in Southeast Queensland, Australia. Biol Conserv 143:60–71

    Article  Google Scholar 

  • Brose U (2003) Bottom-up control of carabid beetle communities in early successional wetlands: mediated by vegetation structure or plant diversity? Oecologia 135:407–413

  • Cadenasso ML, Traynor MM, Pickett STA (1997) Functional location of forest edges: gradients of multiple physical factors. Can J For Res 27:774–782

    Article  Google Scholar 

  • Campbell RE, Harding JS, Ewers RM, Thorpe S, Didham RK (2011) Production land use alters edge response functions in remnant forest invertebrate communities. Ecol Appl 21:3147–3161

    Article  Google Scholar 

  • Chen J, Franklin JF, Spies TA (1995) Growing-season microclimatic changes from Clearcut edges into old-growth Douglas-fir forests. Ecol Appl 5:74–86

    Article  Google Scholar 

  • DeGraaf RM, Yamasaki M (2002) Effects of edge contrast on Redback salamander distribution in even-aged northern hardwoods. For Sci 48:351–363

    Google Scholar 

  • Delgado JN, Arroyo NL, Arevalo JR, Fernandez-Palacios JM (2007) Edge effects of roads on temperature, light, canopy closure, and canopy height in laurel and pine forests (Tenerife, Canary Islands). Landsc Urban Plan 81:328–340

    Article  Google Scholar 

  • Elek Z, Lövei GL (2007) Patterns in carabid beetle (Coleoptera: Carabidae) assemblages along an urbanization gradient in Denmark. Acta Oecol 32:104–111

    Article  Google Scholar 

  • Esri (2014) ArcGIS for Desktop 10.2.1. Esri, Redlands, California, United States. http://www.esri.com/software/arcgis/arcgis-for-desktop. Accessed 21 March 2016

  • Eurostat (2012) LUCAS – land use/cover area frame survey. Statistical Office of the European Communities, Luxemburg http://ec.europa.eu/eurostat/web/lucas/data/database. Accessed 28 December 2016

    Google Scholar 

  • Eversham BC, Telfer MG (1994) Conservation value of roadside verges for stenotopic heathland Carabidae: corridors or refugia? Biodivers Conserv 3:538–545

    Article  Google Scholar 

  • Eversham BC, Roy DB, Telfer MG (1996) Urban, industrial and other manmade sites as analogues of natural habitats for Carabidae. Ann Zool Fenn 33:149–156

    Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Fagan W, Cantrell R, Cosner C (1999) How Habitat Edges Change Species Interactions. Am Nat 153:165–182

    Article  Google Scholar 

  • Fletcher RJ Jr, Ries L, Battin J, Chalfoun AD (2007) The role of habitat area and edge in fragmented landscapes: definitively distinct or inevitably intertwined? Can J Zool 85:1017–1030

    Article  Google Scholar 

  • Gaublomme E, Hendrickx F, Dhuyvetter H, Desender K (2008) The effects of forest patch size and matrix type on changes in carabid beetle assemblages in an urbanized landscape. Biol Conserv 141:2585–2596

    Article  Google Scholar 

  • González-Varo JP, Biesmeijer JC, Bommarco R, Potts SG, Schweiger O, Smith HG, Steffan-Dewenter I, Szentgyörgyi H, Woyciechowski M, Vilà M (2013) Combined effects of global change pressures on animal-mediated pollination. Trends Ecol Evol 28:524–530

    Article  PubMed  Google Scholar 

  • Hamberg L, Lehvävirta S, Kotze DJ (2009) Forest edge structure as a shaping factor of understorey vegetation in urban forests in Finland. For Ecol Manag 257:712–722

    Article  Google Scholar 

  • Harper KA, Macdonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen P-A (2005) Edge influence on Forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782

    Article  Google Scholar 

  • Harrison XA (2014) Using observation-level random effects to model overdispersion in count data in ecology and evolution. Peer J 2:e616

    Article  PubMed  PubMed Central  Google Scholar 

  • Koivula MJ, Punttila P, Haila Y, Niemelä J (1999) Leaf litter and the small-scale distribution of carabid beetles (Coleoptera, Carabidae) in the boreal forest. Ecography 22:424–435

    Article  Google Scholar 

  • Koivula MJ, Hyyryläinen V, Soininen E (2004) Carabid beetles (Coleoptera: Carabidae) at forest-farmland edges in southern Finland. J Insect Conserv 8:297–309

    Article  Google Scholar 

  • Koivula MJ, Kotze DJ, Salokannel J (2005) Beetles (Coleoptera) in central reservations of three highway roads around the city of Helsinki, Finland. Ann Zool Fenn 42:615–626

    Google Scholar 

  • Korpela E-L, Hyvönen T, Kuussaari M (2015) Logging in boreal field-forest ecotones promotes flower-visiting insect diversity and modifies insect community composition. Insect Conserv Diver 8:152–162

    Article  Google Scholar 

  • Kotze DJ, Brandmayr P, Casale A, Dauffy-Richard E, Dekoninck W, Koivula MJ, Lövei GL, Mossakowski D, Noordijk J, Paarmann W, Pizzolotto R, Saska P, Schwerk A, Serrano J, Szyszko J, Taboada A, Turin H, Venn S, Vermeulen R, Zetto T (2011) Forty years of carabid beetle research in Europe - from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. Zoo Keys 100:55–148

    Google Scholar 

  • Kotze DJ, O’Hara RB, Lehvävirta S (2012) Dealing with varying detection probability, unequal sample size and clumped distributions in count data. PLoS One 7:e40923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacasella F, Gratton C, De Felici S, Isaia M, Zapparoli M, Marta S, Sbordoni V (2015) Asymmetrical responses of forest and “beyond edge” arthropod communities across a forest–grassland ecotone. Biodivers Conserv 24:447–465

    Article  Google Scholar 

  • Lindroth CH (1985) The Carabidae (Coleoptera) of Fennoscandia and Denmark, part I and II. Scandinavian Science Press, Copenhagen

    Google Scholar 

  • Lizée MH, Manel S, Mauffrey JF, Tatoni T, Deschamps-Cottin M (2011) Matrix configuration and patch isolation influences override the species–area relationship for urban butterfly communities. Landsc Ecol 27:159–169

    Article  Google Scholar 

  • Lomolino MV, Riddle BR, Whittaker RJ, Brown JH (2010) Biogeography, 4th edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu Rev Entomol 41:231–256

    Article  PubMed  Google Scholar 

  • Luck M, Wu J (2002) A gradient analysis of urban landscape pattern: a case study from the phoenix metropolitan region, Arizona, USA. Landsc Ecol 17:327–339

    Article  Google Scholar 

  • Luff ML (2007) The Carabidae (ground beetles) of Britain and Ireland. RES Handbook Volume 4, Part 2 (2nd edition). Field Studies Council, Shrewsbury

  • Mader HJ (1984) Animal habitat isolation by roads and agricultural fields. Biol Conserv 29:81–96

    Article  Google Scholar 

  • Müller J (1930/31) Bestimmungstabelle der Harpalus-Arten Mitteleuropas, Italiens und der Balkanhalbinsel. Coleopterologisches Centralblatt 5, Berlin

  • Müller-Motzfeld G (2006) Band 2, Adephaga 1: Carabidae (Laufkäfer). In: Freude H, Harde KW, Lohse GA, Klausnitzer B (eds) Die Käfer Mitteleuropas. Spektrum-Verlag, Heidelberg

    Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  CAS  PubMed  Google Scholar 

  • National Land Survey of Finland (2009) Ortho image, normal color: greater Helsinki and Lahti. Scale 1(10):000

    Google Scholar 

  • Niemelä J, Kotze DJ (2009) Carabid beetle assemblages along urban to rural gradients: a review. Landsc Urban Plan 92:65–71

    Article  Google Scholar 

  • Noordijk J, Schaffers AP, Sykora KV (2008) Diversity of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) in roadside verges with grey hair-grass. Eur J Entomol 105:257–265

    Article  Google Scholar 

  • Noreika N, Kotze DJ (2012) Forest edge contrasts have a predictable effect on the spatial distribution of carabid beetles in urban forests. J Insect Conserv 16:867–881

    Article  Google Scholar 

  • O’Hara RB, Kotze DJ (2010) Do not log-transform count data. Methods Ecol Evol 1:118–122

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R Packag Version 2:0–10 http://CRAN.R-project.org/package=vegan. Accessed 21 March 2016

    Google Scholar 

  • Paje F, Mossakowski D (1984) pH-preferences and habitat selection in carabid beetles. Oecologia 64:41–46

    Article  CAS  PubMed  Google Scholar 

  • Peyras M, Vespa NI, Bellocq MI, Zurita GA (2013) Quantifying edge effects: the role of habitat contrast and species specialization. J Insect Conserv 17:807–820

    Article  Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org/. Accessed 21 March 2016

    Google Scholar 

  • RABA (2012) Grafični podatki RABA za celo Slovenijo. Ministry of agriculture, forestry and food, Republic of Slovenia. http://rkg.gov.si/GERK/. Accessed 21 March 2016

  • Rand TA, Louda SM (2006) Spillover of agriculturally subsidized predators as a potential threat to native insect herbivores in fragmented landscapes. Conserv Biol 20:1720–1729

    Article  PubMed  Google Scholar 

  • Rebele F (1994) Urban ecology and special features of urban ecosystems. Glob Ecol Biogeogr 4:173–187

    Article  Google Scholar 

  • Reino L, Beja P, Osborne PE, Morgado R, Fabião A, Rotenberry JT (2009) Distance to edges, edge contrast and landscape fragmentation: interactions affecting farmland birds around forest plantations. Biol Conserv 142:824–838

    Article  Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    Article  CAS  PubMed  Google Scholar 

  • Ries L, Debinski D (2001) Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. JAnim Ecol 70:840–852

    Article  Google Scholar 

  • Ries L, Fagan WF (2003) Habitat edges as a potential ecological trap for an insect predator. Ecol Entomol 28:567–572

    Article  Google Scholar 

  • Ries L, Sisk TD (2004) A predictive model of edge effects. Ecology 85:2917–2926

    Article  Google Scholar 

  • Ries L, Sisk TD (2008) Butterfly edge effects are predicted by a simple model in a complex landscape. Oecologia 156:75–86

    Article  PubMed  Google Scholar 

  • Ries L, Fletcher RJ Jr, Battin J, Sisk TD (2004) Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu Rev Ecol Evol S 35:491–522

    Article  Google Scholar 

  • Saarinen K, Valtonen A, Jantunen J, Saarnio S (2005) Butterflies and diurnal moths along road verges: does road type affect diversity and abundance? Biol Conserv 123:403–412

    Article  Google Scholar 

  • Schneider NA, Low M, Arlt D, Pärt T (2012) Contrast in edge vegetation structure modifies the predation risk of natural ground nests in an agricultural landscape. PLoS One 7:e31517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider NA, Krauss J, Steffan-Dewenter I (2013) Predation rates on semi-natural grasslands depend on adjacent habitat type. Basic Appl Ecol 14:614–621

    Article  Google Scholar 

  • Sisk TD, Haddad NM, Ehrlich PR (1997) Bird assemblages in patchy woodlands: modeling the effects of edge and matrix habitats. Ecol Appl 7:1170–1180

    Article  Google Scholar 

  • Stoate C, Báldi A, Boatman ND, Herzon I, van Doorn A, de Snoo GR, Rakosy L, Ramwell C (2009) Ecological impacts of early twenty-first century agricultural change in Europe – a review. J Environ Manag 91:22–46

    Article  CAS  Google Scholar 

  • Tscharntke T, Rand TA, Bianchi FJJA (2005) The landscape context of trophic interactions: insect spillover across the crop–noncrop interface. Ann Zool Fenn 42:421–432

    Google Scholar 

  • Vermeulen HJW (1993) The composition of the carabid fauna on poor sandy road-side verges in relation to comparable open areas. Biodivers Conserv 2:331–350

    Article  Google Scholar 

  • Vermeulen HJW (1995) Road-side verges: habitat and corridor for carabid beetles of poor sandy and open areas. University of Wageningen, Dissertation

    Google Scholar 

  • Wiens JA, Stenseth NC, Van Horne B, Ims A (1993) Ecological mechanisms and landscape ecology. Oikos 66:369–380

    Article  Google Scholar 

  • Winter M, Johnson DH, Faaborg J (2000) Evidence for edge effects on multiple levels in tallgrass prairie. Condor 102:256–266

    Article  Google Scholar 

Download references

Acknowledgements

The project was partly funded by the Department of Environmental Sciences and the Faculty of Biological and Environmental Sciences, University of Helsinki, the Slovenian Research Agency through the research programme “Communities, relations and communications in the ecosystems (P1-0255)” and a bilateral Finland-Slovenia project (BI-FI/12-13-017). We are grateful to Prof. Jyrki Muona, Dr. Stephen Venn, Norbertas Noreika and Andrej Kapla for their help in identifying some of the carabid beetle species, to Andrej Kapla, Mateja Deržič and Jasna Mladenovič for field and laboratory assistance. Dr. Stephen Venn and Dr. Matti Koivula provided useful comments to an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marju Prass.

Electronic supplementary material

Online Resource 1

(DOCX 36 kb)

Online Resource 2

(DOCX 23 kb)

Online Resource 3

(DOCX 24 kb)

Online Resource 4

(DOCX 22 kb)

Online Resource 5

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prass, M., Vrezec, A., Setälä, H. et al. The matrix affects carabid beetle assemblages in linear urban ruderal habitats. Urban Ecosyst 20, 971–981 (2017). https://doi.org/10.1007/s11252-017-0650-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-017-0650-9

Keywords

Navigation