Skip to main content
Log in

Preliminary assessment on potentials of probiotic B. subtilis RX7 and B. methylotrophicus C14 strains as an immune modulator in Salmonella-challenged weaned pigs

  • Short Communications
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

A total of 40 crossbred weaned piglets (28 days old; [Landrace × Yorkshire] × Duroc) were used for preliminary assessment on potentials of Bacillus-based probiotics as an immune modulator in a Salmonella Typhimurium challenge model in a 3-week experiment. Pigs were randomly allotted to four experimental diets according to their initial body weight (9.21 ± 1.1 kg) and sex (10 pigs per treatment; 5 barrows and 5 gilts). The dietary treatments were basal diet (CON), basal diet + oral administration of Salmonella enterica ser. Typhimurium at the dosage of 1 mL containing 1 × 1011 cfu/mL of viable cell concentrations at day 21 (SC), SC + Bacillus subtilis (BS), and SC+ Bacillus methylotrophicus (BM). After 12 h of Salmonella challenge, the red blood cell (RBC), immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations were reduced (P < 0.05) whereas haptoglobin and cortisol levels were greater (P < 0.05) in SC compared with CON. However, the concentrations of RBC, IgG, and IgM were increased whereas haptoglobin and cortisol levels were reduced in BS and BM compared with SC. The probiotic-treated groups showed reduced (P < 0.05) IgM levels and increased (P < 0.05) WBC and cortisol levels compared with CON. The supplementation of probiotics showed increased (P < 0.05) fecal Lactobacillus counts and reduced Escherichia coli and Salmonella counts in piglets though there was no biological relevance compared with SC. Thus, in our preliminary study, Bacillus-based probiotic has shown some positive immunomodulatory effects in Salmonella-challenged pigs which provided a base for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bajagai, Y. S., Klieve, A.V., Dart, P. J. and Bryden, W. L., 2016. Probiotics in animal nutrition—production, impact and regulation. In: Harinder P.S. Makkar (ed), FAO animal production and health paper no. 179. Rome.

  • Balaji, R., Wright, K. J., Hill, C. M., Dritz, S. S., Knoppel, E. L. and Minton, J. E., 2000. Acute phase responses of pigs challenged orally with Salmonella typhimurium. Journal of Animal Science, 78, 1885–189.

    Article  CAS  PubMed  Google Scholar 

  • Boirivant, M. and Strober, W., 2007. The mechanism of action of probiotics. Current Opinion in Gastroenterology, 23, 679–692.

    Article  PubMed  Google Scholar 

  • Callegari, M. A., Dalto, D. B. and Da Silva, C. A., 2015. A review of prevention and control methods of Salmonella species in swine production the role of dietary non-nutritional additives. Asian Journal of Animal and Veterinary Advances, 10, 803–829.

    Article  Google Scholar 

  • Cartman, S. T., La Ragione, R. M. and Woodward, M. J., 2008. Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Applied and Environmental Microbiology, 74, 5254–5258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, K. L., Kho, W. L., You, S. H., Yeh, R. H., Tang, S. W. and Hsieh, C.W., 2009. Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae mixed fermented feed on the enhanced growth performance of broilers. Poultry Science, 88, 309–315.

    Article  CAS  PubMed  Google Scholar 

  • Crump, J. A., Griffin, P. M. and Angulo, F. J., 2002. Bacterial contamination of animal feed and its relationship to human foodborne illness. Clinical Infectious Disease, 35, 859–865.

    Article  Google Scholar 

  • Gebru, E., Lee, J. S., Son, J. C., Yang, S. Y., Shin, S. A., Kim, B., Kim, M. K. and Park, S. C., 2010. Effect of probiotic, bacteriophage, or organic acid-supplemented feeds or fermented soybean meal on the growth performance, acute-phase response, and bacterial shedding of grower pigs challenged with Salmonella enterica serotype Typhimurium. Journal of Animal Science, 88, 3880–3886.

    Article  CAS  PubMed  Google Scholar 

  • Hallstrom, K. and McCormick, B.A., 2011. Salmonella interaction with and passage through the intestinal mucosa: through the lens of the organism. Frontiers in Microbiology, 2, 88 doi:10.3389/fmicb.2011.00088.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemarajata, P. and Versalovic, J., 2013. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic Advances in Gastroenterology, 6, 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosoi, T., Ametani, A., Kiuchi, K. and Kaminogawa, S., 2000. Improved growth and viability of lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin. Canadian Journal of Microbiology, 46, 892–897.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, P., 1986. The immune system of the neonatal and weaner piglet: a review: Journal of South African Veterinary Association, 57, 243–245.

    CAS  Google Scholar 

  • Knetter, S. M., Bearson, S. M., Huang, T. H., Kurkiewicz, D., Schroyen, M., Nettleton, D., Berman, D., Cohen, V., Lunney, J. K., Ramer-Tait, A. E., Wannemuehler, M. J. and Tuggle, C. K., 2015. Salmonella enterica serovar Typhimurium-infected pigs with different shedding levels exhibit distinct clinical, peripheral cytokine and transcriptomic immune response phenotypes. Innate Immunulogy, 21:227–241.

    Article  CAS  Google Scholar 

  • Naqid, I.A., Owen, J.P., Maddison, B.C., Gardner, D.S., Foster, N., Tchorzewska, M. A., La Ragione, R. M. and Gouch, K.C., 2015. Prebiotic and probiotic agents enhance antibody-based immune responses to Salmonella Typhimurium infection in pigs. Animal Feed Science and Technology, 201, 57–65.

    Article  CAS  Google Scholar 

  • NRC, National Research Council., 2012. Nutrient requirements of swine, 11th edn. National Academic Press, Washington, DC.

    Google Scholar 

  • Okuneye, O.J., Ogunfolabo, L.A., Fasanmi, O.G., Adekunle, O.F. and Oloso, N.O., 2016. Performance and physiological responses of Salmonella enteritidis challenged broilers fed diets containing antibiotic, probiotic and aromabiotic. Journal of Dairy Veterinary and Animal Research, 3(3), 00081. DOI: 10.15406/jdvar.2016.03.00081.

    Google Scholar 

  • Painter, J. A., Hoekstra, R. M., Ayers, T., Tauxe, R. V., Braden, C. R., Angulo, F. J. and Griffin, P. M., 2013. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerging Infectious Diseases, 19, 407–415.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pires, S. M., de Knegt, L. and Hald, T., 2011. Estimation of the relative contribution of different food and animal sources to human Salmonella infections in the European Union. European Food Safety Authority. Available online at http://www.efsa.europa.eu/en/supporting/doc/184e.pdf

  • Pluske, J. R., Pethick, D.W., Hopwood, D. E. and Hampson, D. J., 2002. Nutritional influences on some major enteric bacterial diseases of pig. Nutrition Research Reviews, 15, 333–371.

    Article  CAS  PubMed  Google Scholar 

  • Sassone-Corsi, M. and Raffatellu, M., 2015. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. Journal of Immunology, 194, 4081–4087.

    Article  CAS  Google Scholar 

  • Seo, K.-H., Holt P. S., Vaughn, L. E., Gast, R. K. and Stone, H. D., 2003. Detection of Salmonella enteritidis-specific immunoglobulin A antibodies in crop samples from chickens infected with Salmonella enteritidis. Poultry Science, 82, 67–70.

    Article  CAS  PubMed  Google Scholar 

  • Stein, H. H. and Kil, D. Y., 2006. Reduced use of antibiotic growth promoters in diets fed to weanling pigs: dietary tools, part 2. Animal Biotechnology, 17, 217–231.

    Article  CAS  PubMed  Google Scholar 

  • Szabo, I., Scherer, K., Roesler, U., Appel, B., Nockler, K. and Hensel A., 2008. Comparative examination and validation of ELISA test systems for Salmonella typhimurium diagnosis of slaughtering pigs. International Journal of Food Microbiology, 124, 65–69.

    Article  CAS  PubMed  Google Scholar 

  • Szabo, I., Wieler, L. H., Tedin, K., Scharek-Tedin, L., Taras, D., Hensel, A., Appel, B. and Nockler, K., 2009. Influence of a probiotic strain of Enterococcus faecium on Salmonella enterica serovar Typhimurium DT104 infection in a porcine animal infection model. Applied and Environmental Microbiology, 75, 2621–2628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner, J. L., Dritz, S.S., Higgins, J. J., Herkelman, K. L. and Minton, J. E., 2002. Effects of a Quillaja saponaria extract on growth performance and immune function of weanling pigs challenged with Salmonella typhimurium. Journal of Animal Science, 80, 1939–1946.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, M.C., Rostagno, M.H., Gardiner, G.E., Sutton, A.L., Richert, B.T. and Radcliffe, J.S., 2012. Controlling infection in weanling pigs through water delivery of direct-fed microbials or organic acids. Part I: effects on growth performance, microbial populations and immune status. Journal of Animal Science, 90, 261–271.

    Article  CAS  PubMed  Google Scholar 

  • Walter, J., 2008. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Applied and Environmental Microbiology, 74, 4985–4996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, D. G., Zhao, S., Sudler, R., Ayers, S., Friedman, S., Chen, S., McDermott, P. F., McDermott, S., Wagner, D. D. and Meng, J., 2001. The isolation of antibiotic-resistant Salmonella from retail ground meats. New England Journal of Medicine, 345, 1147–1154.

    Article  CAS  PubMed  Google Scholar 

  • Wright, K. J., Balaji, R., Hill, C. M., Dritz, S. S., Knoppel, E. L. and Minton, J. E., 2000. Integrated adrenal, somatotropic, and immune responses of growing pigs to treatment with lipopolysaccharide. Journal of Animal Science, 78, 1892–1899.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Human Resource Training Program for Regional Innovation and Creativity through the Ministry of Education and National Research Foundation of Korea (NRF-2014H1C1A1067113) and by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) (R0000576).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Ho Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhaya, S.D., Shanmugam, S.K., Kang, D.K. et al. Preliminary assessment on potentials of probiotic B. subtilis RX7 and B. methylotrophicus C14 strains as an immune modulator in Salmonella-challenged weaned pigs. Trop Anim Health Prod 49, 1065–1070 (2017). https://doi.org/10.1007/s11250-017-1278-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-017-1278-8

Keywords

Navigation