Skip to main content
Log in

The Effect of Crosslinks on the Sliding Wear of High-Density Polyethylene

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The purpose of this study was to determinate the influence of the molecular crosslinking in the wear resistance of a linear polyethylene (PE) sliding against a rough steel surface. A set of PEs with different degrees of crosslinks were obtained by chemical modification of a PE with varying concentrations of organic peroxide. The amount of gel, molecular weight between crosslinks (M c), crystallinity and Vickers microhardness were determined in the crosslinked PE’s. The tribological performance of the materials was evaluated under dry sliding conditions using a block-on-ring tester. The coefficient of friction and the wear rate were determined in experiments in which a sample of polymer was contacted with the peripheral surface of a steel ring rotating at constant velocity. The wear resistance of the crosslinked materials increases with the amount of gel and when M c decreases. The crosslinked PE showed a wear rate lower than the original PE when the amount of gel was larger than 80 % of the total mass. The coefficient of friction of the PE and crosslinked material was about 0.2 regardless of the normal load applied. The analysis of the worn surfaces by optical and SEM microscopy reveals that the primary mechanism involved in wear is abrasive wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chodak, I.: Properties of crosslinked polyolefin-based materials. Prog. Polym. Sci. (1995). doi:10.1016/0079-6700(95)98859-N

    Google Scholar 

  2. Peacock, A.J.: The chemistry of polyethylene. J. Macromol. Sci. Part C Polym. Rev. (2001). doi:10.1081/MC-100107860

    Google Scholar 

  3. Lazar, M., Rado, R., Rychly, J.: Crosslinking of polyolefins. Adv. Polym. Sci. (1990). doi:10.1007/3-540-52159-3_8

    Google Scholar 

  4. Shen, C., Dumbleton, J.H.: The friction and wear behavior of irradiated very high molecular weight polyethylene. Wear (1974). doi:10.1016/0043-1648(74)90149-5

    Google Scholar 

  5. Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology, 2nd edn. Butterworth Heinemann, Boston (2001)

    Google Scholar 

  6. De Boer, J., Pennings, A.J.: Crosslinking of ultra-high molecular weight polyethylene in the melt by means of 2,5-dimethyl-2,5-bis(tert-butyldioxy)-3-hexyne: 2. Crystallization behaviour and mechanical properties. Polymer (1982). doi:10.1016/0032-3861(82)90222-1

    Google Scholar 

  7. Narkis, M., Raiter, I., Shkolnik, S., Eyerer, P., Siegmannz, A.: Structure and tensile behavior of irradiation and peroxide-crosslinked polyethylenes. J. Macromol. Sci. Part B Phys. (1987). doi:10.1080/00222348708248057

    Google Scholar 

  8. Khonakdar, H.A., Morshedian, J., Wagenknecht, U., Jafari, S.H.: An investigation of chemical crosslinking effect on properties of high-density polyethylene. Polymer (2003). doi:10.1016/S0032-3861(03)00363-X

    Google Scholar 

  9. Pérez, C.J., Cassano, G.A., Vallés, E.M., Failla, M.D., Quinzani, L.M.: Rheological study of linear high density polyethylenes modified with organic peroxide. Polymer (2002). doi:10.1016/S0032-3861(02)00076-9

    Google Scholar 

  10. Pérez, C.J., Cassano, G.A., Vallés, E.M., Quinzani, L.M., Failla, M.D.: Tensile mechanical behavior modified with organic peroxide. Polym. Eng. Sci. (2003). doi:10.1002/pen.10136

    Google Scholar 

  11. McKellop, H., Shen, F.W., Lu, B., Campbell, P., Salovey, R.: Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements. J. Orthop. Res. (1999). doi:10.1002/jor.1100170203

    Google Scholar 

  12. Kurtz, S.M., Pruitt, L.A., Jewett, C.W., Foulds, J.R., Edidin, A.A.: Radiation and chemical crosslinking promote strain hardening behavior and molecular alignment in ultra high molecular weight polyethylene during multi-axial loading conditions. Biomaterials (1999). doi:10.1016/S0142-9612(99)00038-1

    Google Scholar 

  13. Lewis, G.: Properties of crosslinked ultra-high-molecular-weight polyethylene. Biomaterials (2001). doi:10.1016/S0142-9612(00)00195-2

    Google Scholar 

  14. Gul, R.M.: The effects of peroxide content on the wear behavior, microstructure and mechanical properties of peroxide crosslinked ultra-high molecular weight polyethylene used in total hip replacement. J. Mater. Sci. Mater. Med. (2008). doi:10.1007/s10856-008-3368-7

    Google Scholar 

  15. Yim, C.I., Lee, K.J., Jho, J.Y., Choi, K.: Wear resistance of some modified ultra-high molecular weight polyethylenes and its correlation with tensile properties. Polym. Bull. (1999). doi:10.1007/s002890050486

    Google Scholar 

  16. Muratoglu, O.K., Bragdon, C.R., O’Connor, D.O., Jasty, M., Harris, W.H., Gul, R., et al.: Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE). Biomaterials (1999). doi:10.1016/S0142-9612(99)00039-3

    Google Scholar 

  17. Rose, R.M., Cimino, W.R., Ellis, E., Crugnola, A.N.: Exploratory investigations on the structure dependence of the wear resistance of polyethylene. Wear (1982). doi:10.1016/0043-1648(82)90048-5

    Google Scholar 

  18. Kampouris, E.M., Andreopoulos, A.G.: The effect of the gel content of crosslinked polyethylene on its physical properties. Eur. Polym. J. (1989). doi:10.1016/0014-3057(89)90240-1

    Google Scholar 

  19. Hendra, P.J., Peacock, A.J., Willis, H.A.: The morphology of linear polyethylenes crosslinked in their melts. The structure of melt crystallized polymers in general. Polymer (1987). doi:10.1016/0032-3861(87)90215-1

    Google Scholar 

  20. Quinn, F.A., Mandelkern, L.: Thermodynamics of crystallization in high polymers: poly-(ethylene). J. Am. Chem. Soc. (1958). doi:10.1021/ja01546a003

    Google Scholar 

  21. Henderson, P.J., Wallace, A.J.: Hardness and creep of cross-linked polyethylene. Polymer (1989). doi:10.1016/0032-3861(89)90251-6

    Google Scholar 

  22. Böhm, H., Betz, S., Ball, A.: The wear resistance of polymers. Tribol. Int. (1990). doi:10.1016/0301-679X(90)90055-T

    Google Scholar 

  23. Peacock, A.J.: Computer aided calculation of crosslinking efficiency. Polym. Commun. 25, 169–171 (1984)

    Google Scholar 

  24. Smedberg, A., Hjertberg, T., Gustafsson, B.: The role of entanglements in network formation in unsaturated low density polyethylene. Polymer (2004). doi:10.1016/j.polymer.2004.05.005

    Google Scholar 

  25. Wood-Adams, P.M., Dealy, J.M., DeGroot, A.W., Redwine, O.D.: Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules (2000). doi:10.1021/ma991533z

    Google Scholar 

  26. Mandelkern, L.: Crystallization of Polymer. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  27. Kunert, K.A., Soszyfiska, H., Pislewski, N.: Structural investigation of chemically crosslinked low density polyethylene. Polymer (1981). doi:10.1016/0032-3861(81)90237-8

    Google Scholar 

  28. BaltáCalleja, F.J., Fakirov, S.: Microhardness of Polymers. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  29. Simis, K.S., Bistolfi, A., Bellare, A., Pruitt, L.A.: The combined effects of crosslinking and high crystallinity on the microstructural and mechanical properties of ultra high molecular weight polyethylene. Biomaterials (2006). doi:10.1016/j.biomaterials.2005.09.033

    Google Scholar 

  30. Flores, A., Ania, F., Baltá-Calleja, F.J.: From the glassy state to ordered polymer structures: a microhardness study. Polymer (2009). doi:10.1016/j.polymer.2008.11.037

    Google Scholar 

  31. Tervoort, T.A., Visjager, J., Smith, P.: On abrasive wear of polyethylene. Macromolecules (2002). doi:10.1021/ma020579g

    Google Scholar 

  32. Anderson, J.C.: High density and ultra-high molecular weight polyethenes: their wear properties and bearing applications. Tribol. Int. (1982). doi:10.1016/0301-679X(82)90111-6

    Google Scholar 

  33. Bahadur, S., Stiglich, A.J.: The wear of high density polyethylene sliding against steel surfaces. Wear (1981). doi:10.1016/0043-1648(81)90021-1

    Google Scholar 

  34. Briscoe, B.J., Sinha, S.K.: Wear of polymers. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. (2002). doi:10.1243/135065002762355325

    Google Scholar 

  35. Unal, H., Sen, U., Mimaroglu, A.: Dry sliding wear characteristics of some industrial polymers against steel counterface. Tribol. Int. (2004). doi:10.1016/j.triboint.2004.03.002

    Google Scholar 

  36. Yim, C.I., Lee, K.J., Jho, J.Y., Choi, K.: Wear resistance of some modified ultra-high molecular weight polyethylenes and its correlation with tensile properties. Polym. Bull. (1999). doi:10.1007/s002890050486

    Google Scholar 

  37. Friedrich, K., Schlarb, A.K.: Tribology of Polymeric Nanocomposites. Academic Press, Elsevier (2008)

    Google Scholar 

  38. Matsubara, M., Watanabe, K.: The wear properties of high density polyethylene irradiated by gamma rays. Wear (1967). doi:10.1016/0043-1648(67)90005-1

    Google Scholar 

  39. Briscoe, B.J., Pogosian, A.K., Tabor, D.: The friction and wear of high density polythene: the action of lead oxide and copper oxide fillers. Wear (1974). doi:10.1016/0043-1648(74)90081-7

    Google Scholar 

  40. Tuckart, W., Molinari, E., Rossit, D., Failla, M.: Friction and wear behavior of irradiated polyethylene sliding against a rough steel surface. Tribol. Lett. (2014). doi:10.1007/s11249-014-0344-x

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. C. Molinari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molinari, E.C., Failla, M.D. & Tuckart, W.R. The Effect of Crosslinks on the Sliding Wear of High-Density Polyethylene. Tribol Lett 64, 27 (2016). https://doi.org/10.1007/s11249-016-0763-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0763-y

Keywords

Navigation