Skip to main content
Log in

Tribological Properties of MCD Films Synthesized Using Different Carbon Sources When Sliding Against Stainless Steel

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The carbon source adopted in deposition processes of bias-enhanced hot filament chemical vapor deposition diamond films has significant influences on basic, mechanical and tribological properties of as-deposited films. In the present study, pristine microcrystalline diamond (MCD) films are deposited on both WC-6 wt% Co flat and drawing die substrates, using the same deposition parameters and four typical carbon sources, including the methane, acetone, methanol and the ethanol. As-obtained MCD-coated and WC–Co flat specimens are all applied for standard tribotests, systematically analyzing the typical stages of their friction coefficient curves as functions of the sliding time, differences between tribological properties of MCD films deposited using different carbon sources, as well as effects of the normal load and the sliding velocity adopted in the test, which are closely related to their surface features, composition transformations and mechanical properties. Moreover, MCD-coated and WC–Co drawing die specimens are applied for special-designed wear tests in order to compare their wear rates and removal times, further clarifying the material removal mechanisms, as well as similarities and differences compared with actual applications of diamond-coated drawing dies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shen, B., Sun, F., Xue, H., Chen, M., Zhang, Z.: Study on fabrication and cutting performance of high quality diamond coated PCB milling tools with complicated geometries. Surf. Eng. 25, 70–76 (2009)

    Article  Google Scholar 

  2. Ma, Y., Sun, F., Xue, H., Zhang, Z., Chen, M.: Deposition and characterization of nanocrystalline diamond films on Co-cemented tungsten carbide inserts. Diam. Relat. Mater. 16, 481–485 (2007)

    Article  Google Scholar 

  3. Zhang, Z., Shen, H., Sun, F., He, X., Wan, Y.: Fabrication and application of chemical vapor deposition diamond-coated drawing dies. Diam. Relat. Mater. 10, 33–38 (2001)

    Article  Google Scholar 

  4. Wang, X.C., Shen, B., Sun, F.H., Zhang, Z.M., Shen, H.S., Guo, S.S.: Deposition and application of CVD diamond films on the interior-hole surface of silicon carbide compacting dies. Key Eng. Mater. 499, 45–50 (2012)

    Article  Google Scholar 

  5. Tomé, M.A., Fernandes, A.J.S., Oliveira, F.J., Silva, R.F., Carrapichano, J.M.: High performance sealing with CVD diamond self-mated rings. Diam. Relat. Mater. 14, 617–621 (2005)

    Article  Google Scholar 

  6. Perle, M., Bareiss, C., Rosiwal, S.M., Singer, R.F.: Generation and oxidation of wear debris in dry running tests of diamond coated SiC bearings. Diam. Relat. Mater. 15, 749–753 (2006)

    Article  Google Scholar 

  7. Wolden, C., Mitra, S., Gleason, K.K.: Radiative heat transfer in hot-filament chemical vapor deposition diamond reactors. J. Appl. Phys. 72, 3750–3758 (1992)

    Article  Google Scholar 

  8. Polini, R., Santarelli, M., Traversa, E.: Nucleation and adhesion of diamond films on Co cemented tungsten carbide. J. Electrochem. Soc. 146, 4490–4498 (1999)

    Article  Google Scholar 

  9. Liu, Y.K., Tso, P.L., Lin, I.N., Tzeng, Y., Chen, Y.C.: Comparative study of nucleation processes for the growth of nanocrystalline diamond. Diam. Relat. Mater. 15, 234–238 (2006)

    Article  Google Scholar 

  10. Abreu, C.S., Amaral, M., Oliveira, F.J., Gomes, J.R., Silva, R.F.: HFCVD nanocrystalline diamond coatings for tribo-applications in the presence of water. Diam. Relat. Mater. 18, 271–275 (2009)

    Article  Google Scholar 

  11. Konicek, A.R., Grierson, D.S., Gilbert, P., Sawyer, W.G., Sumant, A.V., Carpick, R.W.: Origin of ultralow friction and wear in ultrananocrystalline diamond. Phys. Rev. Lett. 100, 4 (2008)

    Article  Google Scholar 

  12. Amaral, M., Abreu, C.S., Oliveira, F.J., Gomes, J.R., Silva, R.F.: Tribological characterization of NCD in physiological fluids. Diam. Relat. Mater. 17, 848–852 (2008)

    Article  Google Scholar 

  13. Erdemir, A., Fenske, G.R., Krauss, A.R., Gruen, D.M., McCauley, T., Csencsits, R.T.: Tribological properties of nanocrystalline diamond films. Surf. Coat. Technol. 120–121, 565–572 (1999)

    Article  Google Scholar 

  14. Wang, L., Lei, X., Shen, B., Sun, F., Zhang, Z.: Tribological properties and cutting performance of boron and silicon doped diamond films on Co-cemented tungsten carbide inserts. Diam. Relat. Mater. 33, 54–62 (2013)

    Article  Google Scholar 

  15. Liang, Q., Stanishevsky, A., Vohra, Y.K.: Tribological properties of undoped and boron-doped nanocrystalline diamond films. Thin Solid Films 517, 800–804 (2008)

    Article  Google Scholar 

  16. Wang, X., Wang, L., Shen, B., Sun, F.: Friction and wear performance of boron doped, undoped microcrystalline and fine grained composite diamond films. Chin. J. Mech. Eng. 28, 155–163 (2015)

    Article  Google Scholar 

  17. Shen, B., Sun, F.: Effect of surface morphology on the frictional behaviour of hot filament chemical vapour deposition diamond films. Proc. Inst. Mech. Eng. J. Eng. Tribol. 223, 1–11 (2009)

    Google Scholar 

  18. Shen, B., Sun, F.H.: Deposition and friction properties of ultra-smooth composite diamond films on Co-cemented tungsten carbide substrates. Diam. Relat. Mater. 18, 238–243 (2009)

    Article  Google Scholar 

  19. Takeno, T., Komoriya, T., Nakamori, I., Miki, H., Abe, T., Uchimoto, T., Takagi, T.: Tribological properties of partly polished diamond coatings. Diam. Relat. Mater. 14, 2118–2121 (2005)

    Article  Google Scholar 

  20. Pimenov, S.M., Smolin, A.A., Obraztsova, E.D., Konov, V.I.: Tribological behaviour of smooth diamond films. Surf. Coat. Technol. 77, 572–578 (1995)

    Article  Google Scholar 

  21. Bogli, U., Blatter, A., Pimenov, S.M., Obraztsova, E.D., Smolin, A.A., Maillat, M., Leijala, A., Burger, J., Hintermann, H.E., Loubnin, E.N.: Tribological properties of smooth polycrystalline diamond films. Diam. Relat. Mater. 4, 1009–1019 (1995)

    Article  Google Scholar 

  22. Wang, X., Zhang, J., Shen, B., Zhang, T., Sun, F.: Fracture and solid particle erosion of micro-crystalline, nano-crystalline and boron-doped diamond films. Int. J. Refract. Met. Hard Mater. 45, 31–40 (2014)

    Article  Google Scholar 

  23. Dumpala, R., Chandran, M., Kumar, N., Dash, S., Ramamoorthy, B., Rao, M.S.R.: Growth and characterization of integrated nano- and microcrystalline dual layer composite diamond coatings on WC–Co substrates. Int. J. Refract. Met. Hard Mater. 37, 127–133 (2013)

    Article  Google Scholar 

  24. Wang, X., Zhao, T., Sun, F., Shen, B.: Comparisons of HFCVD diamond nucleation and growth using different carbon sources. Diam. Relat. Mater. 54, 26–33 (2015)

    Article  Google Scholar 

  25. Kobashi, K., Nishimura, K., Kawate, Y., Horiuchi, T.: Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: morphology and growth of diamond films. Phys. Rev. B 38, 4067–4084 (1988)

    Article  Google Scholar 

  26. Spitsyn, B.V., Bouilov, L.L., Derjaguin, B.V.: Vapor growth of diamond on diamond and other surfaces. J. Cryst. Growth 52(Part 1), 219–226 (1981)

    Article  Google Scholar 

  27. Liou, Y., Inspektor, A., Weimer, R., Knight, D., Messier, R.: The effect of oxygen in diamond deposition by microwave plasma enhanced chemical vapor deposition. J. Mater. Res. 5, 2305–2312 (1990)

    Article  Google Scholar 

  28. Belmonte, M.: Diamond coating of coloured Si3N4 ceramics. Diam. Relat. Mater. 14, 54–59 (2005)

    Article  Google Scholar 

  29. Wang, X., Zhang, T., Shen, B., Zhang, J., Sun, F.: Simulation and experimental research on the substrate temperature distribution in HFCVD diamond film growth on the inner hole surface. Surf. Coat. Technol. 219, 109–118 (2013)

    Article  Google Scholar 

  30. Lin, Z., Shen, B., Sun, F., Zhang, Z., Guo, S.: Numerical and experimental investigation of trapezoidal wire cold drawing through a series of shaped dies. Int. J. Adv. Manuf. Technol. 76, 1383–1391 (2015)

    Article  Google Scholar 

  31. Lin, Z., Shen, B., Sun, F., Zhang, Z., Guo, S.: Diamond-coated tube drawing die optimization using finite element model simulation and response surface methodology. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 228, 1432–1441 (2014)

    Article  Google Scholar 

  32. Salgueiredo, E., Amaral, M., Neto, M.A., Fernandes, A.J.S., Oliveira, F.J., Silva, R.F.: HFCVD diamond deposition parameters optimized by a Taguchi Matrix. Vacuum 85, 701–704 (2011)

    Article  Google Scholar 

  33. Shipway, P.H., Hutchings, I.M.: The role of particle properties in the erosion of brittle materials. Wear 193, 105–113 (1996)

    Article  Google Scholar 

  34. Hollman, P., Wanstrand, O., Hogmark, S.: Friction properties of smooth nanocrystalline diamond coatings. Diam. Relat. Mater. 7, 1471–1477 (1998)

    Article  Google Scholar 

  35. Grillo, S.E., Field, J.E.: The friction of CVD diamond at high Hertzian stresses: the effect of load, environment and sliding velocity. J. Phys. D Appl. Phys. 33, 595–602 (2000)

    Article  Google Scholar 

  36. Straffelini, G., Scardi, P., Molinari, A., Polini, R.: Characterization and sliding behavior of HFCVD diamond coatings on WC-Co. Wear 249, 461–472 (2001)

    Article  Google Scholar 

  37. Rabinowicz, E.: Friction and Wear of Materials. Wiley, New York (1995)

    Google Scholar 

  38. Bhushan, B., Jahsman, W.E.: Measurement of dynamic material behavior under nearly uniaxial strain conditions. Int. J. Solids Struct. 14, 739–753 (1978)

    Article  Google Scholar 

  39. Bhushan, B., Jahsman, W.E.: Propagation of weak waves in elastic–plastic and elastic–viscoplastic solids with inerfaces. Int. J. Solids Struct. 14, 39–51 (1978)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Nos. 51275302, 51375011) and China Postdoctoral Science Foundation (No. 15Z102060056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinchang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shen, X., Sun, F. et al. Tribological Properties of MCD Films Synthesized Using Different Carbon Sources When Sliding Against Stainless Steel. Tribol Lett 61, 21 (2016). https://doi.org/10.1007/s11249-015-0639-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0639-6

Keywords

Navigation