Skip to main content
Log in

Tuning the Nanofriction Between Two Graphene Layers by External Electric Fields: A Density Functional Theory Study

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Understanding and controlling nanofriction are important in practical applications of nanotechnology. Our first-principles calculations reveal that interlayer nanofriction between two graphene layers can be tuned by applying an external electric field; the tuned magnitude of the coefficient of friction ranges from −30 to 30 %, which is attributed to the increased disparity of electronic structures between AA and AB stackings. This effect is significantly observed in boron- or nitrogen-doped systems compared with a pristine graphene system. Our findings present a feasible and precise strategy to tune the frictional properties of graphene systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carpick, R.W.: Controlling friction. Science 313, 184–185 (2006)

    Article  Google Scholar 

  2. Urbakh, M., Meyer, E.: The renaissance of friction. Nat. Mater. 9, 8–10 (2010)

    Article  Google Scholar 

  3. Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014)

    Article  Google Scholar 

  4. Kwon, S., Ko, J.-H., Jeon, K.-J., Kim, Y.-H., Park, J.Y.: Enhanced nanoscale friction on fluorinated graphene. Nano Lett. 12, 6043–6048 (2012)

    Article  Google Scholar 

  5. Wang, J., Wang, F., Li, J., Wang, S., Song, Y., Sun, Q., Jia, Y.: Theoretical study of superlow friction between two single-side-hydrogenated graphene sheets. Tribol. Lett. 48, 255–261 (2012)

    Article  Google Scholar 

  6. Wang, J., Li, J., Fang, L., Sun, Q., Jia, Y.: Charge distribution view: large difference in friction performance between graphene and hydrogenated graphene systems. Tribol. Lett. 55, 405–412 (2014)

    Article  Google Scholar 

  7. Guo, Y., Guo, W., Chen, C.: Modifying atomic-scale friction between two graphene sheets: a molecular-force-field study. Phys. Rev. B 76, 155429 (2007)

    Article  Google Scholar 

  8. Neitola, R., Ruuska, H., Pakkanen, T.A.: Ab iniyio studies on nanoscale friction between graphite layers: effect of model size and level of theory. J. Phys. Chem. B 109, 10348–10354 (2005)

    Article  Google Scholar 

  9. Lee, C., Li, Q., Kalb, W., Liu, X., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science 328, 76 (2010)

    Article  Google Scholar 

  10. Zhang, Y., Tang, T.-T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F.: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009)

    Article  Google Scholar 

  11. Castro, E.V., Novoselov, K.S., Norozvo, S.V., Peres, N.M.R., Lopes dos Santos, J.M.B., Nilsson, J., Guinea, F., Geim, A.K., Castro, N.A.H.: Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007)

    Article  Google Scholar 

  12. Mark, K.F., Lui, C.H., Shan, J., Heintz, T.F.: Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009)

    Article  Google Scholar 

  13. Guo, Y., Guo, W., Chen, C.: Tuning field-induced energy gap of bilayer graphene via interlayer spacing. Appl. Phys. Lett. 92, 243101 (2008)

    Article  Google Scholar 

  14. Drummond, C.: Electric-field-induced friction reduction and control. Phys. Rev. Lett. 109, 154302 (2012)

    Article  Google Scholar 

  15. Wang, C., Chen, W., Zhang, Y., Sun, Q., Jia, Y.: Effects of vdW interaction and electric field on friction in MoS2. Tribol. Lett. 59, 1–8 (2015)

    Article  Google Scholar 

  16. Kress, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  Google Scholar 

  17. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    Article  Google Scholar 

  18. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  Google Scholar 

  19. Neugebauer, J., Scheffler, M.: Adsorbate–substrate and adsorbate–adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 46, 16067–16080 (1992)

    Article  Google Scholar 

  20. Zhong, W., Tománek, D.: First-principles theory of atomic-scale friction. Phys. Rev. Lett. 64, 3054–3057 (1990)

    Article  Google Scholar 

  21. Min, H., Sahu, B., Banerjee, S.K., MacDonald, A.H.: Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B 75, 155115 (2007)

    Article  Google Scholar 

  22. Wu, M., Cao, C., Jiang, J.Z.: Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study. Nanotechnology 21, 505202 (2010)

    Article  Google Scholar 

  23. Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G.: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009)

    Article  Google Scholar 

  24. Kim, Y.A., Fujisawa, K., Muramatsu, H., Hayashi, T., Endo, M., Fujimori, T., Kaneko, K., Terrones, M., Behrends, J., Eckmann, A., Casiraghi, C., Novoselov, K.S., Saito, R., Dresselhaus, M.S.: Raman spectroscopy of boron-doped single-layer graphene. ACS Nano 6, 6293–6300 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Basic Research Program of China (Grant No. 2012CB921300), National Natural Science Foundation of China (Grant Nos. 11447155, 11274280), Natural Science Foundation of Henan Province (Grant No. 142300410250) and Foundation of Henan Educational Committee (Grant No. 14A140025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Wang or Yu Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, J., Li, C. et al. Tuning the Nanofriction Between Two Graphene Layers by External Electric Fields: A Density Functional Theory Study. Tribol Lett 61, 4 (2016). https://doi.org/10.1007/s11249-015-0624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0624-0

Keywords

Navigation