Skip to main content
Log in

Friction and Deformation Behaviors of ~60-μm Stainless Steel Micro-balls for Application in Small Precision Devices

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The friction and deformation behaviors of ~60-μm-diameter stainless steel micro-balls were assessed under various rolling conditions against Si specimens. In the friction tests, the micro-balls were placed between a stationary flat silicon specimen on the top and a flat or grooved silicon specimen at the bottom that was made to move in a reciprocating motion. Rectangular- and V-shaped grooves were fabricated on the silicon specimen by a photolithographic process, and the effect of groove shape on the frictional behavior of the micro-balls was investigated. Friction coefficient of 0.01 could be successfully achieved when proper rolling was attained. It was found that the number of micro-balls was not a critical factor as long as more than three balls were placed between the two flat Si specimens. Furthermore, rectangular-shaped groove resulted in lower friction than V-shaped groove. This was due to severe deformation of the micro-ball which led to increase in the contact area when the V-shaped groove was used. The results of this work were expected to aid in the development of miniature bearings for applications in small precision systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Harris, T.A., Mindel, M.H.: Rolling element bearing dynamics. Wear 23, 311–317 (1973)

    Article  Google Scholar 

  2. Jacobson, B.: History of rolling bearings. Tribol. Online 6, 155–159 (2011)

    Article  Google Scholar 

  3. Moerlooze, K.D., Al-Bender, F., Brussel, H.V.: Modeling of the dynamic behavior of systems with rolling elements. Int. J. Nonlinear Mech. 46, 222–233 (2011)

    Article  Google Scholar 

  4. Lin, C.W., Lin, Y.K., Chu, C.H.: Dynamic models and design of spindle-bearing systems of machine tools: a review. Int. J. Precis. Eng. Manuf. 14, 513–521 (2013)

    Article  Google Scholar 

  5. Kim, S.H., Asay, D.B., Dugger, M.T.: Nanotribology and MEMS. Nano Today 2, 22–29 (2007)

    Article  Google Scholar 

  6. Mouboudian, R., Ashurst, W.R., Carraro, C.: Tribological challenges in micromechanical systems. Tribol. Lett. 12, 95–100 (2002)

    Article  Google Scholar 

  7. Van Spengen, W.M.: MEMS reliability from a failure mechanisms perspective. Microelectron. Reliab. 43, 1049–1060 (2003)

    Article  Google Scholar 

  8. Williams, J.A., Le, H.R.: Tribology and MEMS. J. Phys. D Appl. Phys. 39, R201–R214 (2006)

    Article  Google Scholar 

  9. Donneta, C., Erdemir, A.: Solid lubricant coatings: recent developments and future trends. Tribol. Lett. 17, 389–397 (2004)

    Article  Google Scholar 

  10. Zhu, L.N., Wang, C.B., Wang, H.D., Xu, B.S., Zhuang, D.M., Liu, J.J., Li, G.L.: Microstructure and tribological properties of WS2/MoS2 multilayer films. Appl. Surf. Sci. 258, 1944–1948 (2012)

    Article  Google Scholar 

  11. Myshkin, N.K., Petrokovets, M.I., Kovalev, A.V.: Tribology of polymers: adhesion, friction, wear, and mass-transfer. Tribol. Int. 38, 910–921 (2005)

    Article  Google Scholar 

  12. Lua, X., Wong, K.C., Wong, P.C., Mitchell, K.A.R., Cotter, J., Eadie, D.T.: Surface characterization of polytetrafluoroethylene (PTFE) transfer films during rolling–sliding tribology tests using X-ray photoelectron spectroscopy. Wear 261, 1155–1162 (2006)

    Article  Google Scholar 

  13. Sung, I.H., Yang, J.C., Kim, D.E., Shin, B.S.: Micro/nano-tribological characteristics of self-assembled monolayer and its application in nano-structure fabrication. Wear 255, 808–818 (2003)

    Article  Google Scholar 

  14. Sung, I.H., Lee, H.S., Kim, D.E.: Effect of surface topography on the frictional behavior at the micro/nano-scale. Wear 254, 1019–1031 (2003)

    Article  Google Scholar 

  15. Zalnezhad, E., Sarhan, A.A.D.M., Hamd, M.: Surface hardness prediction of CrN thin film coating on AL7075-T6 alloy using fuzzy logic system. Int. J. Precis Eng. Manuf. 14, 467–473 (2013)

    Article  Google Scholar 

  16. Singh, R.A., Pham, D.C., Kim, J., Yang, S., Yoon, E.S.: Bio-inspired dual surface modification to improve tribological properties at small-scale. Appl. Surf. Sci. 255, 4821–4828 (2009)

    Article  Google Scholar 

  17. Satyanarayana, N., Lau, K.H., Sinha, S.K.: Nanolubrication of poly (methyl methacrylate) films on Si for microelectromechanical systems applications. Appl. Phys. Lett. 93, 261906 (2008)

    Article  Google Scholar 

  18. Singh, R.A., Siyuan, L., Satyanarayana, N., Kustandi, T.S., Sinha, S.K.: Bio-inspired polymeric patterns with enhanced wear durability for microsystem applications. Mater. Sci. Eng. C 31, 1577–1583 (2011)

    Article  Google Scholar 

  19. Singh, R.A., Satyanarayana, N., Kustandi, T.S., Sinha, S.K.: Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices. J. Phys. D Appl. Phys. 44, 015301 (2011)

    Article  Google Scholar 

  20. Jiguet, S., Judelewicz, M., Mischler, S., Hofmann, H., Bertsch, A., Renaud, P.: SU-8 nanocomposite coatings with improved tribological performance for MEMS. Surf. Coat. Technol. 201, 2289–2295 (2006)

    Article  Google Scholar 

  21. Tay, N.B., Minn, M., Sinha, S.K.: Polymer jet printing of SU-8 micro-dot patterns on Si surface: optimization of tribological properties. Tribol. Lett. 42, 215–222 (2011)

    Article  Google Scholar 

  22. Zhou, L., Kato, K., Umehara, N., Miyake, Y.: The effects of texture height and thickness of amorphous carbon nitride coating of a hard disk slider on the friction and wear of the slider against a disk. Tribol. Int. 33, 665–672 (2000)

    Article  Google Scholar 

  23. Porta, M., Fantoni, G., Lambert, P.: An integrated and compact device for microassembly exploiting electrostatic sorting and capillary grasping. CIRP J. Manuf. Sci. Technol. 3, 185–190 (2010)

    Article  Google Scholar 

  24. Ghodssi, R., Denton, D.D., Seireg, A.A., Howland, B.: Rolling friction in a linear microactuator. J. Vac. Sci. Technol., A 11, 803–807 (1993)

    Article  Google Scholar 

  25. Lin, T.W., Modafe, A., Shapiro, B., Ghodssi, R.: Characterization of dynamic friction in MEMS-based microball bearings. IEEE Trans. Instrum. Meas. 53, 839–846 (2004)

    Article  Google Scholar 

  26. Modafe, A., Ghalichechian, N., Frey, A., Lang, J.H., Ghodssi, R.: Microball-bearing-supported electrostatic micromachines with polymer dielectric films for electromechanical power conversion. J. Micromech. Microeng. 16, S182–S190 (2006)

    Article  Google Scholar 

  27. Ghalichechian, N., Modafe, A., Lang, J.H., Ghodssi, R.: Dynamic characterization of a linear electrostatic micromotor supported on microball bearings. Sensor. Actuat. A Phys. 136, 496–503 (2007)

    Article  Google Scholar 

  28. Ghalichechian, N., Modafe, A., Beyaz, M.I., Ghodssi, R.: Design, fabrication, and characterization of a rotary micromotor supported on microball bearings. J. Microelectromech. Syst. 17, 632–642 (2008)

    Article  Google Scholar 

  29. Waits, C.M., Geil, B., Ghodssi, R.: Encapsulated ball bearings for rotary micro machines. J. Micromech. Microeng. 17, S224–S229 (2007)

    Article  Google Scholar 

  30. McCarthy, M., Waits, C.M., Ghodssi, R.: Dynamic friction and wear in a planar-contact encapsulated microball bearing using an integrated microturbine. J. Microelectromech. Syst. 18, 263–273 (2009)

    Article  Google Scholar 

  31. Tan, X., Modafe, A., Ghodssi, R.: Measurement and modeling of dynamic rolling friction in linear microball bearings. J. Dyn. Syst. Meas. Control. 128, 891–898 (2006)

    Article  Google Scholar 

  32. Waits, C.M., McCarthy, M., Ghodssi, R.: A microfabricated spiral-groove turbopump supported on microball bearings. J. Microelectromech. Syst. 19, 99–109 (2010)

    Article  Google Scholar 

  33. Olaru, D.N., Stamate, C., Dumitrascu, A., Prisacaru, G.: New micro tribometer for rolling friction. Wear 271, 842–852 (2011)

    Article  Google Scholar 

  34. Sinha, S.K., Pang, R., Tang, X.: Application of micro-ball bearing on Si for high rolling life-cycle. Tribol. Int. 43, 178–187 (2010)

    Article  Google Scholar 

  35. Chun, B.S., Suto, H.: The relationship between hardness and wear of alloys in liquid nitrogen. Trans. ISIJ 23, 425–433 (1983)

    Article  Google Scholar 

  36. Nishimura, A., Yamamoto, J., Nyilas, A.: Fatigue crack growth rate of SUS 316 and weld joint with natural crack at 7 K. Adv. Cryog. Eng. Mater. 44, 81–88 (1998)

    Article  Google Scholar 

  37. Hanrahan, B., Misra, S., Beyaz, M., Feldman, J., Waits, M., Ghodssi, R.: An adhesion-dominated rolling friction regime unique to micro-scale ball bearings. Tribol. Lett. 56, 215–222 (2014)

    Article  Google Scholar 

  38. Hanrahan, B., Misra, S., Waits, C.M., Ghodssi, R.: Wear mechanisms in microfabricated ball bearing systems. Wear 326–327, 1–9 (2015)

    Article  Google Scholar 

  39. Hanrahan, B., Waits, C.M., Ghodssi, R.: Isotropic etching technique for three-dimensional microball bearing raceways. J. Micromech. Microeng. 24, 1–13 (2014)

    Google Scholar 

  40. Al-Bayati, A.H., Orrman-Rossiter, K.G., Van den Berg, J.A., Armour, D.G.: Composition and structure of the native Si oxide by high depth resolution medium energy ion scattering. Surf. Sci. 241, 91–102 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP; No. 2010-0018289).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Eun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, DS., Kim, HJ., Kim, JK. et al. Friction and Deformation Behaviors of ~60-μm Stainless Steel Micro-balls for Application in Small Precision Devices. Tribol Lett 59, 47 (2015). https://doi.org/10.1007/s11249-015-0573-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0573-7

Keywords

Navigation