Skip to main content
Log in

Crack Healing Between Rough Polycrystalline Silicon Hydrophilic Surfaces in n-Pentanol and Water Vapors

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The crack healing rates of polycrystalline silicon microcantilevers in contact with a substrate are measured in n-pentanol vapor at different partial pressures, p/p s. The absolute value of the slope of the logarithmic average crack healing velocity \(\bar{v}\) versus the energy release rate G, \(|d[\log (\bar{v})]/dG|\), is constant and decreases with increasing p/p s. The slope dependence on p/p s is equivalent to that in a water vapor environment. This slope is independent of p/p s in glass stress corrosion cracking experiments due to chemical kinetics, while the present experiments reflect a capillary bridge nucleation mechanism across nanometer-scale gaps created by surface roughness. Equilibrium measurements of adhesion versus p/p s are also compared for n-pentanol and water vapor. For p/p s ≤ 0.5, adhesion is comparable for the two vapors, while for p/p s > 0.5, adhesion in water vapor is approximately twice that in n-pentanol vapor. At lower p/p s, this is explained by the larger Kelvin radius and the larger adsorbed layer thickness of n-pentanol. This combination enables larger asperity gaps to be bridged by capillary liquids. At higher p/p s, adhesion in water vapor is larger because the work of adhesion of capillary bridges becomes twice that of n-pentanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mate, C.M.: Application of disjoining and capillary pressure to liquid lubricant films in magnetic recording. J. Appl. Phys. 72, 3084 (1992)

    Article  Google Scholar 

  2. Qian, J., Gao, H.: Scaling effects of wet adhesion in biological attachment systems. Acta Biomater. 2, 51–58 (2006)

    Article  Google Scholar 

  3. Mastrangelo, C.H., Hsu, C.H.: Mechanical stability and adhesion of microstructures under capillary forces-part I: basic theory. J. Microelectromech. Syst. 2, 33–43 (1993)

    Article  Google Scholar 

  4. Mastrangelo, C.H., Hsu, C.H.: Mechanical stability and adhesion of microstructures under capillary forces-part ii: experiments. J. Microelectromech. Syst. 2, 44–55 (1993)

    Article  Google Scholar 

  5. Sun, W., Neuzil, P., Kustandi, T.S., Oh, S., Samper, V.D.: The nature of the gecko lizard adhesive force. Biophys. J. 89, L14–L17 (2005)

    Article  Google Scholar 

  6. Asay, D.B., Dugger, M.T., Kim, S.H.: In-situ vapor-phase lubrication of MEMS. Tribol. Lett. 29, 67–74 (2007)

    Article  Google Scholar 

  7. Asay, D.B., Dugger, M.T., Ohlhausen, J.A., Kim, S.H.: Macro- to nanoscale wear prevention via molecular adsorption. Langmuir 24, 155–159 (2008)

    Article  Google Scholar 

  8. Barnette, A.L., Asay, D.B., Ohlhausen, J.A., Dugger, M.T., Kim, S.H.: Tribochemical polymerization of adsorbed n-pentanol on SiO2 during rubbing: when does it occur and is it responsible for effective vapor phase lubrication? Langmuir. 26, 16299–16304 (2010)

  9. Ma, J.: Advanced MEMS Technologies and Displays. Displays (2014)

  10. Lawn, B.: Fracture of Brittle Solids. Cambridge University Press, Cambridge (1993)

  11. Freiman, S.W., Wiederhorn, S.M., Mecholsky Jr, J.J.: Environmentally enhanced fracture of glass: a historical perspective. J. Am. Ceram. Soc. 92, 1371–1382 (2009)

    Article  Google Scholar 

  12. Wan, K., Aimard, N., Lathabai, S., Horn, R.G., Lawn, B.R.: Interfacial energy states of moisture-exposed cracks in mica. J. Mater. Res. 5, 172–182 (1990)

    Article  Google Scholar 

  13. Wiederhorn, S.M., Freiman, S.W., Fuller, E.R., Simmons, C.J.: Effects of water and other dielectrics on crack growth. J. Mater. Sci. 17, 3460–3478 (1982)

    Article  Google Scholar 

  14. Wondraczek, L., Dittmar, A., Oelgardt, C., Celarie, F., Ciccotti, M., Marliere, C.: Real-time observation of a non-equilibrium liquid condensate confined at tensile crack tips in oxide glasses. J. Am. Ceram. Soc. 89, 746–749 (2006)

    Article  Google Scholar 

  15. Michalske, T.A., Fuller, E.R.: Closure and repropagation of healed cracks in silicate glass. J. Am. Ceram. Soc. 68, 586–590 (1985)

    Article  Google Scholar 

  16. Wilson, B.A., Case, E.D.: In situ microscopy of crack healing in borosilicate glass. J. Mater. Sci. 32, 3163–3175 (1997)

    Article  Google Scholar 

  17. Holden, M.K.C., Frechette, V.D.: Healing of glass in humid environments. J. Am. Ceram. Soc. 72, 2189–2193 (1989)

    Article  Google Scholar 

  18. Lehman, R.L., Hill, R.E., Sigel, G.H.: Low-temperature crack closure in fluoride glass. J. Am. Ceram. Soc. 72, 474–477 (1989)

    Article  Google Scholar 

  19. De Boer, M.P.: Capillary adhesion between elastically hard rough surfaces. Exp. Mech. 47, 171–183 (2007)

    Article  Google Scholar 

  20. Soylemez, E., de Boer, M.P.: Capillary-induced crack healing between surfaces of nanoscale roughness. Langmuir 30, 11625–11633 (2014)

    Article  Google Scholar 

  21. Xue, X., Polycarpou, A.A., Phinney, L.M.: Measurement and modeling of adhesion energy between two rough microelectromechanical system (MEMS) surfaces. J. Adhes. Sci. Technol. 22, 429–455 (2008)

  22. Soylemez, E., de Boer, M.P., Ashurst, W.R.: Nucleation rate of capillary bridges between multi-asperity surfaces. MRS Proceedings, p. 1659. Cambridge University Press, Cambridge (2014)

  23. Hariri, A., Zu, J.W., Mrad, R.: Ben: modeling of dry stiction in micro electro-mechanical systems (MEMS). J. Micromech. Microeng. 16, 1195–1206 (2006)

    Article  Google Scholar 

  24. Sniegowski, J.J., de Boer, M.P.: IC-compatible polysilicon surface micromachining. Annu. Rev. Mater. Sci. 30, 299–333 (2000)

    Article  Google Scholar 

  25. Meinhart, M., Miller, N., Saif, M.T.A.: Dry stiction of micro structures—theory and experiment. Proc. R. Soc. A Math. Phys. Eng. Sci. 462, 567–585 (2006)

    Article  Google Scholar 

  26. Soylemez, E., Plass, R.A., Ashurst, W.R., de Boer, M.P.: Probing microelectromechanical systems in an environmentally controlled chamber using long working distance interferometry. Rev. Sci. Instrum. 84, 075006–1–075006–0750066 (2013)

    Article  Google Scholar 

  27. De Boer, M.P., Michalske, T.A.: Accurate method for determining adhesion of cantilever beams. J. Appl. Phys. 86, 817–827 (1999)

    Article  Google Scholar 

  28. DelRio, F.W., Dunn, M.L., Boyce, B.L., Corwin, A.D., de Boer, M.P.: The effect of nanoparticles on rough surface adhesion. J. Appl. Phys. 99, 104304 (2006)

    Article  Google Scholar 

  29. DelRio, F.W., Dunn, M.L., Phinney, L.M., Bourdon, C.J., de Boer, M.P.: Rough surface adhesion in the presence of capillary condensation. Appl. Phys. Lett. 90, 163104 (2007)

    Article  Google Scholar 

  30. Williams, D.B.G., Lawton, M.: Drying of organic solvents: quantitative evaluation of the efficiency of several desiccants. J. Org. Chem. 75, 8351–8354 (2010)

    Article  Google Scholar 

  31. Greivenkamp, J.E., Bruning, J.H.: Optical Shop Testing. Wiley and Sons, New York (1992)

    Google Scholar 

  32. Jensen, B.D., Boer, M.P.De., Masters, N.D., Bitsie, F., Lavan, D.A.: Interferometry of actuated microcantilevers to determine material properties and test structure nonidealities in MEMS. J. Microelectromech. Syst. 10, 336–346 (2001)

    Article  Google Scholar 

  33. Delrio, F.W., de Boer, M.P., Knapp, J.A., David Reedy, E., Clews, P.J., Dunn, M.L.: The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 4, 629–634 (2005)

  34. Bunker, B.C., Michalske, T.A.: Effect of surface corrosion on glass fracture. Springer, Boston, MA (1986)

    Book  Google Scholar 

  35. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, Waltham (1992)

  36. Soylemez, E.: Capillary kinetics between multi asperity surfaces. Ph.D. thesis, Carnegie Mellon University (2014)

  37. Restagno, F., Bocquet, L., Biben, T.: Metastability and nucleation in capillary condensation. Phys. Rev. Lett. 84, 2433–2436 (2000)

    Article  Google Scholar 

  38. Yaws, C.L.: Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds. Knovel, New York (2003)

  39. De Boer, M.P., de Boer, P.C.T.: Thermodynamics of capillary adhesion between rough surfaces. J. Colloid Interface Sci. 311, 171–185 (2007)

    Article  Google Scholar 

  40. Asay, D.B., Kim, S.H.: Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J. Phys. Chem. B 109, 16760–16763 (2005)

    Article  Google Scholar 

  41. Wang, X., Zhao, M., Nolte, D.D.: Ambient molecular water accumulation on silica surfaces detected by a reflectance interference optical balance. Appl. Phys. Lett. 97(183702–1), 183702–183703 (2010)

    Article  Google Scholar 

  42. Theillet, P.-O., Pierron, O.N.: Quantifying adsorbed water monolayers on silicon MEMS resonators exposed to humid environments. Sensors Actuators A Phys. 171, 375–380 (2011)

    Article  Google Scholar 

  43. Christenson, H.K.: Phase behaviour in slits-when tight cracks stay wet. Colloids Surfaces A Physicochem. Eng. Asp. 124, 355–367 (1997)

    Article  Google Scholar 

  44. Mate, C.M., Lorenz, M.R., Novotny, V.J.: Atomic force microscopy of polymeric liquid films. J. Chem. Phys. 90, 7550 (1989)

    Article  Google Scholar 

  45. Asay, D.B., Kim, S.H.: Molar volume and adsorption isotherm dependence of capillary forces in nanoasperity contacts. Langmuir 23, 12174–12178 (2007)

    Article  Google Scholar 

  46. Butt, H.-J.: Capillary forces : influence of roughness and heterogeneity. Langmuir 24, 4715–4721 (2008)

    Article  Google Scholar 

  47. Rabinovich, Y.I., Adler, J.J., Esayanur, M.S., Ata, A., Singh, R.K., Moudgil, B.M.: Capillary forces between surfaces with nanoscale roughness. Adv. Colloid Interface Sci. 96, 213–230 (2002)

    Article  Google Scholar 

  48. Thoreson, E.J., Burnham, N.A.: Standard-deviation minimization for calibrating the radii of spheres attached to atomic force microscope cantilevers. Rev. Sci. Instrum. 75, 1359–1362 (2004)

  49. DelRio, F.W., Dunn, M.L., de Boer, M.P.: Capillary adhesion model for contacting micromachined surfaces. Scr. Mater. 59, 916–920 (2008)

    Article  Google Scholar 

  50. DelRio, F.W., Dunn, M.L., de Boer, M.P.: Growth of silicon carbide nanoparticles using tetraethylorthosilicate for microelectromechanical systems. Electrochem. Solid-State Lett. 10, H27–H30 (2007)

    Article  Google Scholar 

  51. Gellman, A.J.: Vapor lubricant transport in MEMS devices. Tribol. Lett. 17, 455–461 (2004)

    Article  Google Scholar 

  52. Ku, I.S.Y., Reddyhoff, T., Holmes, A.S., Spikes, H.A.: Wear of silicon surfaces in MEMS. Wear 271, 1050–1058 (2011)

    Article  Google Scholar 

  53. Dugger, M.T.: Tribological challenges in MEMS and their mitigation via vapor phase lubrication. SPIE Proc. 8031, 80311H1–80311H–11 (2011)

Download references

Acknowledgments

The authors gratefully acknowledge National Science Foundation funding through CMMI Grant No. CMMI 1030322. We also thank the technical staff in the Microelectronics Development Laboratory at Sandia National Labs in Albuquerque, NM, 87108 for fabricating the microcantilevers. We thank Professor W. Robert Ashurst for suggesting the use of the molecular sieves technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten P. de Boer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soylemez, E., de Boer, M.P. Crack Healing Between Rough Polycrystalline Silicon Hydrophilic Surfaces in n-Pentanol and Water Vapors. Tribol Lett 59, 5 (2015). https://doi.org/10.1007/s11249-015-0525-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0525-2

Keywords

Navigation