Skip to main content
Log in

Tribochemical Formation of Sulphide Tribofilms from a Ti–C–S Coating Sliding Against Different Counter Surfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Tribochemically active TiCS coatings are nanocomposite coatings containing a S-doped titanium carbide, from which S can be released in a tribological contact. This work studies tribochemical reactions between a TiCS coating and various counter surface materials, and their effect on the tribological performance. Tribological tests were performed in a ball-on-disc set-up, using balls of five different materials as sliding partners for the coating: 100Cr6 steel, pure W, WC, 316-L steel and Al2O3. For W balls, a WS2 tribofilm was formed, leading to low friction (down to µ = 0.06). Furthermore, increasing normal load on the W balls was found to lead to a strong decrease in µ and earlier formation of the low-friction WS2 tribofilm. Similar WS2 and MoS2 tribofilms were, however, not formed from WC- and Mo-containing 316-L balls. The performance when using WC and Al2O3 balls was significantly worse than for the two steel balls. It is suggested that this is due to sulphide formation from Fe, analogous to formation of anti-seizure tribofilms from S-containing extreme pressure additives and steel surfaces. The tribochemical activity of TiCS coatings, with the possibility of S release, is thus beneficial not only for pure W counter surfaces, but also for Fe-based sliding partners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nossa, A., Cavaleiro, A.: The influence of the addition of C and N on the wear behaviour of W–S–C/N coatings. Surf. Coat. Technol. 142–144, 984–991 (2001)

    Article  Google Scholar 

  2. Voevodin, A.A., O’Neill, J.P., Zabinski, J.S.: WC/DLC/WS2 nanocomposite coatings for aerospace tribology. Tribol. Lett. 6(2), 75–78 (1999)

    Article  Google Scholar 

  3. Podgornik, B., Hren, D., Vižintin, J., Jacobson, S., Stavlid, N., Hogmark, S.: Combination of DLC coatings and EP additives for improved tribological behaviour of boundary lubricated surfaces. Wear 261(1), 32–40 (2006). doi:10.1016/j.wear.2005.09.007

    Article  Google Scholar 

  4. De Barros, M.I., Bouchet, J., Raoult, I., Le Mogne, T., Martin, J.M., Kasrai, M., Yamada, Y.: Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses. Wear 254(9), 863–870 (2003). doi:10.1016/S0043-1648(03)00237-0

  5. Lara, J., Blunt, T., Kotvis, P., Riga, A., Tysoe, W.T.: Surface chemistry and extreme-pressure lubricant properties of dimethyl disulfide. J. Phys. Chem. B 102(10), 1703–1709 (1998)

    Article  Google Scholar 

  6. Sawyer, W.G., Blanchet, T.A.: Lubrication of Mo, W, and their alloys with H2S gas admixtures to room temperature air. Wear 225229, Part 1(0), 581–586 (1999). doi:10.1016/S0043-1648(99)00020-4

  7. Sundberg, J., Nyberg, H., Särhammar, E., Kádas, K., Wang, L., Eriksson, O., Nyberg, T., Jacobson, S., Jansson, U.: Tribochemically active TiCS nanocomposite coatings. Mater. Res. Lett. 1(3), 148–155 (2013). doi:10.1080/21663831.2013.802262

    Article  Google Scholar 

  8. Sanchez-Lopez, J.C., Martinez-Martinez, D., Lopez-Cartes, C., Fernandez, A.: Tribological behaviour of titanium carbide/amorphous carbon nanocomposite coatings: from macro to the micro-scale. Surf. Coat. Technol. 202(16), 4011–4018 (2008)

    Article  Google Scholar 

  9. Pei, Y.T., Galvan, D., De Hosson, J.T.M., Cavaleiro, A.: Nanostructured TiC/a-C coatings for low friction and wear resistant applications. Surf. Coat. Technol. 198(1–3), 44–50 (2005). doi:10.1016/j.surfcoat.2004.10.106

    Article  Google Scholar 

  10. Lindquist, M., Wilhelmsson, O., Jansson, U., Wiklund, U.: Tribofilm formation and tribological properties of TiC and nanocomposite TiAlC coatings. Wear 266(3–4), 379–387 (2009). doi:10.1016/j.wear.2008.04.046

    Article  Google Scholar 

  11. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992). doi:10.1557/jmr.1992.1564

    Article  Google Scholar 

  12. Lewin, E., Wilhelmsson, O., Jansson, U.: Nanocomposite nc-TiC/a-C thin films for electrical contact applications. J. Appl. Phys. 100(5) (2006). doi:10.1063/1.2336302

  13. Grosseau-Poussard, J.L., Moine, P., Brendle, M.: Shear strength measurements of parallel MoSx thin films. Thin Solid Films 307(1–2), 163–168 (1997). doi:10.1016/S0040-6090(97)00205-8

    Article  Google Scholar 

  14. Chastain, J., King, R.C. (eds.): Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics, Eden Prairie (1995)

    Google Scholar 

  15. Zabinski, J.S., McDevitt, N.T.: Raman spectra of inorganic compounds related to solid state tribochemical studies. In vol. WL-TR-96-4034. Wright-Patterson Air Force Base, Dayton, Ohio (1996)

  16. de Faria, D.L.A., Venâncio Silva, S., de Oliveira, M.T.: Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28(11), 873–878 (1997). doi:10.1002/(sici)1097-4555(199711)28:11<873:aid-jrs177>3.0.co;2-b

    Article  Google Scholar 

  17. Vogt, H., Chattopadhyay, T., Stolz, H.J.: Complete first-order Raman spectra of the pyrite structure compounds FeS2, MnS2 AND SiP2. J. Phys. Chem. Solids 44(9), 869–873 (1983). doi:10.1016/0022-3697(83)90124-5

    Article  Google Scholar 

  18. Sundberg, J., Nyberg, H., Särhammar, E., Gustavsson, F., Kubart, T., Nyberg, T., Jacobson, S., Jansson, U.: Influence of Ti addition on the structure and properties of low-friction W–S–C coatings. Surf. Coat. Technol. 232, 340–348 (2013). doi:10.1016/j.surfcoat.2013.05.032

    Article  Google Scholar 

  19. Voevodin, A.A., O’Neill, J.P., Zabinski, J.S.: Nanocomposite tribological coatings for aerospace applications. Surf. Coat. Technol. 116–119, 36–45 (1999)

    Article  Google Scholar 

  20. Polcar, T., Evaristo, M., Cavaleiro, A.: Friction of self-lubricating W–S–C sputtered coatings sliding under increasing load. Plasma Process. Polym. 4(S1), S541–S546 (2007). doi:10.1002/ppap.200731402

    Article  Google Scholar 

  21. Hai-dou, W., Da-ming, Z., Kun-lin, W., Jia-jun, L.: Comparison of the tribological properties of an ion sulfurized coating and a plasma sprayed FeS coating. Mater. Sci. Eng. A 357(1–2), 321–327 (2003). doi:10.1016/S0921-5093(03)00209-0

    Article  Google Scholar 

  22. Hu, C., Zou, J., Qian, J., Jin, D., Sun, X.: Study on friction reduction and wear resistance process and composition of FeS solid lubrication duplex layer. Adv. Mater. Res. 502, 60–66 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The Swedish Foundation for Strategic Research is acknowledged for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Nyberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyberg, H., Sundberg, J., Särhammar, E. et al. Tribochemical Formation of Sulphide Tribofilms from a Ti–C–S Coating Sliding Against Different Counter Surfaces. Tribol Lett 56, 563–572 (2014). https://doi.org/10.1007/s11249-014-0437-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0437-6

Keywords

Navigation