Skip to main content
Log in

Sliding Wear Behaviour of Nanocrystalline Fe88Si12 Alloy Under Low Load and Speed

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Sliding wear behaviour of nanocrystalline Fe88Si12 alloys with different grain sizes has been investigated under low load and speed. The friction coefficient of the Fe88Si12 alloy changes slightly with the grain size, but the wear resistance improves as the grain size decreases. The reduction of the grain size of the Fe88Si12 alloy not only results in the hardness increase, but also is beneficial to form Fe2SiO4 film on the worn surface. The Fe2SiO4 layer can form on the worn surface of the Fe88Si12 alloy even under smaller applied load when the grain size decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Meyers, M.A., Mishra, A., Benson, D.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006)

    Article  CAS  Google Scholar 

  2. Jeong, D.H., Gonzalez, F., Palumbo, G., Aust, K.T., Erb, U.: The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings. Scripta Mater. 44, 493–499 (2001)

    Article  CAS  Google Scholar 

  3. Sriraman, K.R., Raman, S., Seshadri, S.K.: Synthesis and evaluation of hardness and sliding wear resistance of electrodeposited nanocrystalline Ni–W alloys. Mater. Sci. Eng. A 418, 303–311 (2006)

    Article  Google Scholar 

  4. Wang, L., Ma, J., Yang, J., Bi, Q., Fu, L., Liu, W.: Dry-sliding tribological properties of a nano-eutectic Fe1.87C0.13 alloy. Wear 268, 991–995 (2010)

    Article  CAS  Google Scholar 

  5. Yang, J., Ma, J., Bi, Q., Liu, W., Xun, Q.: Tribological properties of Fe3Al material under water environment. Mater. Sci. Eng. A 490, 90–94 (2008)

    Article  Google Scholar 

  6. Rupert, T., Schuh, C.: Sliding wear of nanocrystalline Ni–W: structural evolution and the apparent breakdown of Archard scaling. Acta Mater. 58, 4137–4148 (2010)

    Article  CAS  Google Scholar 

  7. Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953)

    Article  Google Scholar 

  8. Zhang, Y.S., Han, Z., Wang, K., Lu, K.: Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 260, 942–948 (2006)

    Article  CAS  Google Scholar 

  9. Sun, H.Q., Shi, Y.N., Zhang, M.: Sliding wear-induced microstructure evolution of nanocrystalline and coarse-grained AZ91D Mg alloy. Wear 266, 666–670 (2009)

    Article  CAS  Google Scholar 

  10. Henry, S.: Friction, Lubrication, and Wear Technology. ASM Handbook, Materials Park (1992)

    Google Scholar 

  11. Myung, J., Lim, H., Kang, S.: Oxidation behavior of nanocrystalline Al alloys containing 5 and 10 at.% Ti. Oxid. Met. 51, 79–85 (1999)

    Article  CAS  Google Scholar 

  12. Han, Z., Lu, L., Zhang, H.W., Yang, Z.Q., Wang, F.H., Lu, K.: Comparison of the oxidation behavior of nanocrystalline and coarse-grain copper. Oxid. Met. 63, 261–275 (2005)

    Article  CAS  Google Scholar 

  13. Ma, G., Xu, B., Wang, H., Si, H., Yang, D.: Effect of surface nanocrystallization on the tribological properties of 1Cr18Ni9Ti stainless steel. Mater. Lett. 65, 1268–1271 (2011)

    Article  CAS  Google Scholar 

  14. Fu, L., Yang, J., Bi, Q., Ma, J., Liu, W.: Combustion synthesis and characterization of bulk nanocrystalline Fe88Si12 alloy. IEEE Trans. Nanotechnol. 9, 218–222 (2010)

    Article  Google Scholar 

  15. Fu, L., Yang. J., Bi. Q., Liu, W.: Dry reciprocal sliding wear behavior of nanocrystalline Fe88Si12 alloy. Pac. Insects Mech. Eng. J J. Eng. (2012). doi:10.1177/1350650112450802

  16. Kragel’skii, I.V., Silin, A.: The design of low-wear friction materials. Mech. Compos. Mater. 5, 245–248 (1969)

    Google Scholar 

  17. Toru, Y., Peter, H.: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008)

    Article  Google Scholar 

  18. Aghdam, A.B., Khonsari, M.M.: On the correlation between wear and entropy in dry sliding contact. Wear 270, 781–790 (2011)

    Article  CAS  Google Scholar 

  19. Lashin, A., Schneeweiss, O., Houbaert, Y.: Effect of ambient air pressure on the oxidation kinetics of Fe-6 at.% Si alloy. Corros. Sci. 50, 2580–2587 (2008)

    Article  CAS  Google Scholar 

  20. Palumbo, G., Aust, K.T.: Structure-dependence of intergranular corrosion in high purity nickel. Acta Met. Mater. 24, 2343–2352 (1990)

    Article  Google Scholar 

  21. Wolff, U., Schneider, F., Mummert, K., Schultz, L.: Stability and electrochemical properties of passive layers on Fe–Si alloys. Corrosion 56, 1195–1201 (2000)

    Article  CAS  Google Scholar 

  22. Koch, C.C., Ovidko, I.A., Seal, S., Veprek, S.: Structural Nanocrystalline Materials. Fundamentals and Applications. Cambridge University Press, New York (2007)

    Book  Google Scholar 

  23. Lejcek, P., Schneeweiss, O., Fraczkiewicz, A.: Grain boundary segregation in an ordered Fe-24 at.% Si alloy. Surf. Sci. 566–568, 826–831 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (50801064) and the National 973 Project of China (2007CB607601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licai Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, L., Yang, J., Bi, Q. et al. Sliding Wear Behaviour of Nanocrystalline Fe88Si12 Alloy Under Low Load and Speed. Tribol Lett 48, 329–335 (2012). https://doi.org/10.1007/s11249-012-0028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0028-3

Keywords

Navigation