Skip to main content

Advertisement

Log in

The production of multi-transgenic pigs: update and perspectives for xenotransplantation

  • TARC X
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The domestic pig shares many genetic, anatomical and physiological similarities to humans and is thus considered to be a suitable organ donor for xenotransplantation. However, prior to clinical application of porcine xenografts, three major hurdles have to be overcome: (1) various immunological rejection responses, (2) physiological incompatibilities between the porcine organ and the human recipient and (3) the risk of transmitting zoonotic pathogens from pig to humans. With the introduction of genetically engineered pigs expressing high levels of human complement regulatory proteins or lacking expression of α-Gal epitopes, the HAR can be consistently overcome. However, none of the transgenic porcine organs available to date was fully protected against the binding of anti-non-Gal xenoreactive natural antibodies. The present view is that long-term survival of xenografts after transplantation into primates requires additional modifications of the porcine genome and a specifically tailored immunosuppression regimen compliant with current clinical standards. This requires the production and characterization of multi-transgenic pigs to control HAR, AVR and DXR. The recent emergence of new sophisticated molecular tools such as Zinc-Finger nucleases, Transcription-activator like endonucleases, and the CRISPR/Cas9 system has significantly increased efficiency and precision of the production of genetically modified pigs for xenotransplantation. Several candidate genes, incl. hTM, hHO-1, hA20, CTLA4Ig, have been explored in their ability to improve long-term survival of porcine xenografts after transplantation into non-human primates. This review provides an update on the current status in the production of multi-transgenic pigs for xenotransplantation which could bring porcine xenografts closer to clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahrens HE, Petersen B, Herrmann D, Lucas-Hahn A, Hassel P, Ziegler M et al (2015a) siRNA mediated knockdown of tissue factor expression in pigs for xenotransplantation. Am J Transplant 15:1407–1414

    Article  CAS  PubMed  Google Scholar 

  • Ahrens HE, Petersen B, Ramackers W, Petkov S, Herrmann D, Hauschild-Quintern J et al (2015b) Kidneys from α1,3-galactosyltransferase knockout/human heme oxygenase-1/human A20 transgenic pigs are protected from rejection during ex vivo perfusion with human blood. Transplant Direct 1:1–8

    Article  Google Scholar 

  • Bach FH, Ferran C, Hechenleitner P, Mark W, Koyamada N, Miyatake T et al (1997) Accommodation of vascularized xenografts: expression of “protective genes” by donor endothelial cells in a host Th2 cytokine environment. Nat Med 3:196–204

    Article  CAS  PubMed  Google Scholar 

  • Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F et al (1992) Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem 267:18148–18153

    CAS  PubMed  Google Scholar 

  • Banz Y, Cung T, Korchagina EY, Bovin NV, Haeberli A, Rieben R (2005) Endothelial cell protection and complement inhibition in xenotransplantation: a novel in vitro model using whole blood. Xenotransplantation 12:434–443

    Article  PubMed  Google Scholar 

  • Brune B, Ullrich V (1987) Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol 32:497–504

    CAS  PubMed  Google Scholar 

  • Byrne GW, Stalboerger PG, Davila E, Heppelmann CJ, Gazi MH, McGregor HC et al (2008) Proteomic identification of non-Gal antibody targets after pig-to-primate cardiac xenotransplantation. Xenotransplantation 15:268–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrne GW, Stalboerger PG, Du Z, Davis TR, McGregor CG (2011) Identification of new carbohydrate and membrane protein antigens in cardiac xenotransplantation. Transplantation 91:287–292

    Article  CAS  PubMed  Google Scholar 

  • Byrne GW, Du Z, Stalboerger P, Kogelberg H, McGregor CG (2014) Cloning and expression of porcine beta1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen. Xenotransplantation 21:543–554

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109:17382–17387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou H, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL et al (1998) A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci USA 95:11751–11756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DK, Satyananda V, Ekser B, van der Windt DJ, Hara H, Ezzelarab MB et al (2014) Progress in pig-to-non-human primate transplantation models (1998–2013): a comprehensive review of the literature. Xenotransplantation 21:397–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Crikis S, Cowan PJ, d’Apice AJ (2006) Intravascular thrombosis in discordant xenotransplantation. Transplantation 82:1119–1123

    Article  PubMed  Google Scholar 

  • Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S et al (2002) Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20:251–255

    Article  CAS  PubMed  Google Scholar 

  • d’Apice AJ, Cowan PJ (2008) Xenotransplantation: the next generation of engineered animals. Transpl Immunol 21:111–115

    Article  PubMed  PubMed Central  Google Scholar 

  • Davila E, Byrne GW, LaBreche PT, McGregor HC, Schwab AK, Davies WR et al (2006) T-cell responses during pig-to-primate xenotransplantation. Xenotransplantation 13:31–40

    Article  PubMed  Google Scholar 

  • Esquivel EL, Maeda A, Eguchi H, Asada M, Sugiyama M, Manabe C et al (2015) Suppression of human macrophage-mediated cytotoxicity by transgenic swine endothelial cell expression of HLA-G. Transpl Immunol 32:109–115

    Article  CAS  PubMed  Google Scholar 

  • Estrada JL, Martens G, Li P, Adams A, Newell KA, Ford ML et al (2015) Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation 22:194–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimura T, Kurome M, Murakami H, Takahagi Y, Matsunami K, Shimanuki S et al (2004) Cloning of the transgenic pigs expressing human decay accelerating factor and N-acetylglucosaminyltransferase III. Cloning Stem Cells 6:294–301

    Article  CAS  PubMed  Google Scholar 

  • Galili U (1993) Interaction of the natural anti-Gal antibody with alpha-galactosyl epitopes: a major obstacle for xenotransplantation in humans. Immunol Today 14:480–482

    Article  CAS  PubMed  Google Scholar 

  • Garrels W, Mates L, Holler S, Dalda A, Taylor U, Petersen B et al (2011) Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome. PLoS ONE 6:e23573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto M, Groth CG, Nilsson B, Korsgren O (2004) Intraportal pig islet xenotransplantation into athymic mice as an in vivo model for the study of the instant blood-mediated inflammatory reaction. Xenotransplantation 11:195–202

    Article  PubMed  Google Scholar 

  • Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32:577–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24:372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris DG, Quinn KJ, French BM, Schwartz E, Kang E, Dahi S et al (2015) Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood. Xenotransplantation 22:102–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A et al (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci USA 108:12013–12017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauschild-Quintern J, Petersen B, Queisser AL, Lucas-Hahn A, Schwinzer R, Niemann H (2013a) Gender non-specific efficacy of ZFN mediated gene targeting in pigs. Transgenic Res 22:1–3

    Article  CAS  PubMed  Google Scholar 

  • Hauschild-Quintern J, Petersen B, Cost GJ, Niemann H (2013b) Gene knockout and knockin by zinc-finger nucleases: current status and perspectives. Cell Mol Life Sci 70:2969–2983

    Article  CAS  PubMed  Google Scholar 

  • Horvath-Arcidiacono JA, Porter CM, Bloom ET (2006) Human NK cells can lyse porcine endothelial cells independent of their expression of Galalpha(1,3)-Gal and killing is enhanced by activation of either effector or target cells. Xenotransplantation 13:318–327

    Article  PubMed  Google Scholar 

  • Ide K, Ohdan H, Kobayashi T, Hara H, Ishiyama K, Asahara T (2005) Antibody- and complement-independent phagocytotic and cytolytic activities of human macrophages toward porcine cells. Xenotransplantation 12:181–188

    Article  PubMed  Google Scholar 

  • Inverardi L, Clissi B, Stolzer AL, Bender JR, Sandrin MS, Pardi R (1997) Human natural killer lymphocytes directly recognize evolutionarily conserved oligosaccharide ligands expressed by xenogeneic tissues. Transplantation 63:1318–1330

    Article  CAS  PubMed  Google Scholar 

  • Iwase H, Ezzelarab MB, Ekser B, Cooper DK (2014) The role of platelets in coagulation dysfunction in xenotransplantation, and therapeutic options. Xenotransplantation 21:201–220

    Article  PubMed  Google Scholar 

  • Izsvak Z, Chuah MK, Vandendriessche T, Ivics Z (2009) Efficient stable gene transfer into human cells by the Sleeping Beauty transposon vectors. Methods 49:287–297

    Article  CAS  PubMed  Google Scholar 

  • Jaattela M, Mouritzen H, Elling F, Bastholm L (1996) A20 zinc finger protein inhibits TNF and IL-1 signaling. J Immunol 156:1166–1173

    CAS  PubMed  Google Scholar 

  • Kim D, Bae S, Park J, Kim E, Kim S, Yu HR et al (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12:237–243

    Article  CAS  PubMed  Google Scholar 

  • Klymiuk N, van Buerck L, Bahr A, Offers M, Kessler B, Wuensch A et al (2012) Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes 61:1527–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwaki K, Tseng YL, Dor FJ, Shimizu A, Houser SL, Sanderson TM et al (2005) Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med 11:29–31

    Article  CAS  PubMed  Google Scholar 

  • Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS et al (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089–1092

    Article  CAS  PubMed  Google Scholar 

  • LaMattina JC, Burdorf L, Zhang T, Rybak E, Cheng X, Munivenkatappa R et al (2014) Pig-to-baboon liver xenoperfusion utilizing GalTKO.hCD46 pigs and glycoprotein Ib blockade. Xenotransplantation 21:274–286

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsen CP, Pearson TC, Adams AB, Tso P, Shirasugi N, Strobert E et al (2005) Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant 5:443–453

    Article  CAS  PubMed  Google Scholar 

  • Lee KF, Salvaris EJ, Roussel JC, Robson SC, d’Apice AJ, Cowan PJ (2008) Recombinant pig TFPI efficiently regulates human tissue factor pathways. Xenotransplantation 15:191–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee KG, Lee H, Ha JM, Lee YK, Kang HJ, Park CG et al (2012) Increased human tumor necrosis factor-alpha levels induce procoagulant change in porcine endothelial cells in vitro. Xenotransplantation 19:186–195

    Article  PubMed  Google Scholar 

  • Li P, Estrada JL, Burlak C, Montgomery J, Butler JR, Santos RM et al (2015) Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation 22:20–31

    Article  CAS  PubMed  Google Scholar 

  • Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C, Blain C et al (2013) Live pigs produced from genome edited zygotes. Sci Rep 3:2847

    Article  PubMed  Google Scholar 

  • Lin CC, Chen D, McVey JH, Cooper DK, Dorling A (2008) Expression of tissue factor and initiation of clotting by human platelets and monocytes after incubation with porcine endothelial cells. Transplantation 86:702–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loveland BE, Milland J, Kyriakou P, Thorley BR, Christiansen D, Lanteri MB et al (2004) Characterization of a CD46 transgenic pig and protection of transgenic kidneys against hyperacute rejection in non-immunosuppressed baboons. Xenotransplantation 11:171–183

    Article  PubMed  Google Scholar 

  • Luther T, Flossel C, Mackman N, Bierhaus A, Kasper M, Albrecht S et al (1996) Tissue factor expression during human and mouse development. Am J Pathol 149:101–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz J, le Luong A, Strobl M, Deng M, Huang H, Anton M et al (2008) The A20 gene protects kidneys from ischaemia/reperfusion injury by suppressing pro-inflammatory activation. J Mol Med (Berl) 86:1329–1339

    Article  CAS  Google Scholar 

  • Ma X, Ye B, Gao F, Liang Q, Dong Q, Liu Y et al (2012) Tissue factor knockdown in porcine islets: an effective approach to suppressing the instant blood-mediated inflammatory reaction. Cell Transplant 21:61–71

    Article  PubMed  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  • Miwa Y, Kobayashi T, Nagasaka T, Liu D, Yu M, Yokoyama I et al (2004) Are N-glycolylneuraminic acid (Hanganutziu–Deicher) antigens important in pig-to-human xenotransplantation? Xenotransplantation 11:247–253

    Article  PubMed  Google Scholar 

  • Mueller BM, Reisfeld RA, Edgington TS, Ruf W (1992) Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proc Natl Acad Sci USA 89:11832–11836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemann H, Verhoeyen E, Wonigeit K, Lorenz R, Hecker J, Schwinzer R et al (2001) Cytomegalovirus early promoter induced expression of hCD59 in porcine organs provides protection against hyperacute rejection. Transplantation 72:1898–1906

    Article  CAS  PubMed  Google Scholar 

  • Oropeza M, Petersen B, Carnwath JW, Lucas-Hahn A, Lemme E, Hassel P et al (2009) Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation 16:522–534

    Article  PubMed  Google Scholar 

  • Osterud B, Rapaport SI (1977) Activation of factor IX by the reaction product of tissue factor and factor VII: additional pathway for initiating blood coagulation. Proc Natl Acad Sci USA 74:5260–5264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padler-Karavani V, Yu H, Cao H, Chokhawala H, Karp F, Varki N et al (2008) Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 18:818–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry GC, Erlich JH, Carmeliet P, Luther T, Mackman N (1998) Low levels of tissue factor are compatible with development and hemostasis in mice. J Clin Invest 101:560–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen B, Niemann H (2015) Molecular scissors and their application in genetically modified farm animals. Transgenic Res 24:381–396

    Article  CAS  PubMed  Google Scholar 

  • Petersen B, Carnwath JW, Niemann H (2009a) The perspectives for porcine-to-human xenografts. Comp Immunol Microbiol Infect Dis 32:91–105

    Article  PubMed  Google Scholar 

  • Petersen B, Ramackers W, Tiede A, Lucas-Hahn A, Herrmann D, Barg-Kues B et al (2009b) Pigs transgenic for human thrombomodulin have elevated production of activated protein C. Xenotransplantation 16:486–495

    Article  PubMed  Google Scholar 

  • Petersen B, Ramackers W, Lucas-Hahn A, Lemme E, Hassel P, Queisser AL et al (2011) Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys. Xenotransplantation 18:355–368

    Article  PubMed  Google Scholar 

  • Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH et al (2003) Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299:411–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes LM, Estrada JL, Wang ZY, Blosser RJ, Smith RF, Sidner RA et al (2014) Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol 193:5751–5757

    Article  CAS  PubMed  Google Scholar 

  • Rieben R, Seebach JD (2005) Xenograft rejection: IgG1, complement and NK cells team up to activate and destroy the endothelium. Trends Immunol 26:2–5

    Article  CAS  PubMed  Google Scholar 

  • Roussel JC, Moran CJ, Salvaris EJ, Nandurkar HH, d’Apice AJ, Cowan PJ (2008) Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am J Transplant 8:1101–1112

    Article  CAS  PubMed  Google Scholar 

  • Ryter SW, Choi AM (2013) Carbon monoxide: present and future indications for a medical gas. Korean J Intern Med 28:123–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salama A, Evanno G, Harb J, Soulillou JP (2015) Potential deleterious role of anti-Neu5Gc antibodies in xenotransplantation. Xenotransplantation 22:85–94

    Article  PubMed  Google Scholar 

  • Scobie L, Padler-Karavani V, Le Bas-Bernardet S, Crossan C, Blaha J, Matouskova M et al (2013) Long-term IgG response to porcine Neu5Gc antigens without transmission of PERV in burn patients treated with porcine skin xenografts. J Immunol 191:2907–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song HY, Rothe M, Goeddel DV (1996) The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc Natl Acad Sci USA 93:6721–6725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor FB Jr, Chang A, Ruf W, Morrissey JH, Hinshaw L, Catlett R et al (1991) Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock 33:127–134

    PubMed  Google Scholar 

  • Tenhunen R, Ross ME, Marver HS, Schmid R (1970) Reduced nicotinamide-adenine dinucleotide phosphate dependent biliverdin reductase: partial purification and characterization. Biochemistry 9:298–303

    Article  CAS  PubMed  Google Scholar 

  • Mohiuddin MM, Singh AK, Corcoran PC, Hoyt RF, Thomas, ML, III, Ayares D, et al. (2014) Genetically engineered pigs and target-specific immunomodulation provide significant graft survival and hope for clinical cardiac xenotransplantation. J Thorac Cardiovasc Surg 148:1106–1113 (discussion 1113–1114)

  • Toomey JR, Kratzer KE, Lasky NM, Stanton JJ, Broze GJ Jr (1996) Targeted disruption of the murine tissue factor gene results in embryonic lethality. Blood 88:1583–1587

    CAS  PubMed  Google Scholar 

  • Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D et al (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32:569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    Article  CAS  PubMed  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  • Weiss EH, Lilienfeld BG, Muller S, Muller E, Herbach N, Kessler B et al (2009) HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation 87:35–43

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DG, Joseph ME, Mahamud SD, Aurand WL, Mohler PJ, Pompili VJ et al (2012) Transgenic swine: expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol 52:958–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL et al (2014) Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Wuensch A, Baehr A, Bongoni AK, Kemter E, Blutke A, Baars W et al (2014) Regulatory sequences of the porcine THBD gene facilitate endothelial-specific expression of bioactive human thrombomodulin in single- and multitransgenic pigs. Transplantation 97:138–147

    Article  CAS  PubMed  Google Scholar 

  • Xin J, Yang H, Fan N, Zhao B, Ouyang Z, Liu Z et al (2013) Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS ONE 8:e84250

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada K, Yazawa K, Shimizu A, Iwanaga T, Hisashi Y, Nuhn M et al (2005) Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med 11:32–34

    Article  CAS  PubMed  Google Scholar 

  • Yang YG, Sykes M (2007) Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol 7:519–531

    Article  CAS  PubMed  Google Scholar 

  • Yet SF, Tian R, Layne MD, Wang ZY, Maemura K, Solovyeva M et al (2001) Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ Res 89:168–173

    Article  CAS  PubMed  Google Scholar 

  • Zayed H, Izsvak Z, Walisko O, Ivics Z (2004) Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol Ther 9:292–304

    Article  CAS  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Shen B, Zhang W, Wang J, Yang J, Chen L et al (2014) One-step generation of different immunodeficient mice with multiple gene modifications by CRISPR/Cas9 mediated genome engineering. Int J Biochem Cell Biol 46:49–55

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) TRR 127 and the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence “REBIRTH”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heiner Niemann or Bjoern Petersen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niemann, H., Petersen, B. The production of multi-transgenic pigs: update and perspectives for xenotransplantation. Transgenic Res 25, 361–374 (2016). https://doi.org/10.1007/s11248-016-9934-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-016-9934-8

Keywords

Navigation