Skip to main content
Log in

The Arabidopsis PLAT domain protein1 promotes abiotic stress tolerance and growth in tobacco

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Plant growth and consequently crop yield can be severely compromised by abiotic and biotic stress conditions. Transgenic approaches that resulted in increased tolerance against abiotic stresses often were typically accompanied by adverse effects on plant growth and fitness under optimal growing conditions. Proteins that belong to the PLAT-plant-stress protein family harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and are ubiquitously present in monocot and dicot plant species. Until now, only limited data is available for PLAT-plant-stress family members, which suggested that these proteins in general could promote tolerance towards stress responses. We studied the function of the Arabidopsis PLAT-plant-stress protein AtPLAT1 employing heterologous gain-of-function analysis in tobacco. AtPLAT1 conferred increased abiotic stress tolerance in tobacco, evident by improved tolerance towards cold, drought and salt stresses, and promoted growth, reflected by a faster development under non-stressed conditions. However, the overexpression of AtPLAT1 in tobacco reduced the tolerance towards biotic stress conditions and, therefore, could be involved in regulating the crosstalk between abiotic and biotic stress responses. Thus, we showed that heterologously expressed AtPLAT1 functions as positive regulator of abiotic stress tolerance and plant growth, which could be an important new asset for strategies to develop plants with improved abiotic stress tolerance, without growth and subsequent yield penalties under optimal growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abuqamar S, Luo H, Laluk K, Mickelbart MV, Mengiste T (2009) Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J 58:347–360

    Article  CAS  PubMed  Google Scholar 

  • Allard JB, Brock TG (2005) Structural organization of the regulatory domain of human 5-lipoxygenase. Curr Protein Pept Sci 6:125–131

    Article  CAS  PubMed  Google Scholar 

  • Balibrea Lara ME, Gonzalez Garcia MC, Fatima T, Ehneß R, Lee TK, Proels R, Tanner W, Roitsch T (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16:1276–1287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bateman A, Sandford R (1999) The PLAT domain: a new piece in the PKD1 puzzle. Curr Biol 9:588–590

    Article  Google Scholar 

  • Bhardwaj PK, Kaur J, Sobti RC, Ahuja PS, Kumar S (2011) Lipoxygenase in Caragana jubata responds to low temperature, abscisic acid, methyl jasmonate and salicylic acid. Gene 483:49–53

    Article  CAS  PubMed  Google Scholar 

  • Bonfig KB, Schreiber U, Gabler A, Roitsch T, Berger S (2006) Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 225:1–12

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Dang HQ, Tran NQ, Gill SS, Tuteja R, Tuteja N (2011) A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. Plant Mol Biol 76:19–34

    Article  CAS  PubMed  Google Scholar 

  • Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant Mol Biol 69:437–449

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Luking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–1391

    Article  CAS  PubMed  Google Scholar 

  • Grant MR, Jones JD (2009) Hormone (dis)harmony moulds plant health and disease. Science 324:750–752

    Article  CAS  PubMed  Google Scholar 

  • Großkinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Griebel T, Zeier J, Novak O, Strnad M, Pfeifhofer H, Van der Graaff E, Simon U, Roitsch T (2011) Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiol 157:815–830

    Article  PubMed Central  PubMed  Google Scholar 

  • Großkinsky DK, van der Graaff E, Roitsch T (2012) Phytoalexin transgenics in crop protection—fairy tale with a happy end? Plant Sci 195:54–70

    Article  PubMed  Google Scholar 

  • Großkinsky DK, Albacete A, Jammer A, Krbez P, van der Graaff E, Pfeifhofer H, Roitsch T (2014a) A rapid phytohormone and phytoalexin screening method for physiological phenotyping. Mol Plant 7:1053–1056

    Article  PubMed  Google Scholar 

  • Großkinsky DK, van der Graaff E, Roitsch T (2014b) Abscisic acid-cytokinin antagonism modulates resistance against Pseudomonas syringae in tobacco. Phytopathology. doi:10.1094/PHYTO-03-14-0076-R

    PubMed  Google Scholar 

  • Hong Y, Wang TW, Hudak KA, Schade F, Froese CD, Thompson JE (2000) An ethylene-induced cDNA encoding a lipase expressed at the onset of senescence. Proc Natl Acad Sci USA 97:8717–8722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu FC, Chou MY, Peng HP, Chou SJ, Shih MC (2011) Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS One 6:e28888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu J, Barr MM (2005) ATP-2 interacts with the PLAT domain of LOV-1 and is involved in Caenorhabditis elegans polycystin signaling. Mol Biol Cell 16:458–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sin 46:1–10

    CAS  Google Scholar 

  • Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog 27:297–306

    Article  CAS  PubMed  Google Scholar 

  • Hyun TK, van der Graaff E, Albacete AA, Eom SH, Großkinsky DK, Böhm H, Janschek U, Ali WW, Kim SY, Roitsch T (2014) The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance. PLoS One 9:e112946

    Article  PubMed Central  PubMed  Google Scholar 

  • Inamdar MI, Bhat RS, Kuruvinashetti MS (2010) Cloning a drought-inducible cDNA (PjPLAT1) from Prosopis juliflora. Karnataka J Agric Sci 23:350–351

    Google Scholar 

  • Islam S, Griffiths CA, Blomstedt CK, Le TN, Gaff DF, Hamill JD, Neale AD (2013) Increased biomass, seed yield and stress tolerance is conferred in Arabidopsis by a novel enzyme from the resurrection grass Sporobolus stapfianus that glycosylates the strigolactone analogue GR24. PLoS One 8:e80035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. In: Kole C, Michler CH, Abobott AG, Hall TC (eds) Transgenic crop plants, vol 2. Springer, Heidelberg, pp 67–132

    Chapter  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Nguyen V, Schroeder JI (2006) The role of reactive oxygen species in hormonal responses. Plant Physiol 141:323–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leal GA Jr, Albuquerque PS, Figueira A (2007) Genes differentially expressed in Theobroma cacao associated with resistance to witches’ broom disease caused by Crinipellis perniciosa. Mol Plant Pathol 8:279–292

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Kim SH, An SH, Yi SY, Hwang BK (2006) Identification and functional expression of the pepper pathogen-induced gene, CaPIP2, involved in disease resistance and drought and salt stress tolerance. Plant Mol Biol 62:151–164

    Article  CAS  PubMed  Google Scholar 

  • Li ST, Zhang M, Fu CH, Xie S, Zhang Y, Yu LJ (2012) Molecular cloning and characterization of two 9-lipoxygenase genes from Taxus chinensis. Plant Mol Biol Rep 30:1283–1290

    Article  CAS  Google Scholar 

  • Li Z, Zhang L, Wang A, Xu X, Li J (2013) Ectopic overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis. PLoS One 8:e54880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Minor W, Steczko J, Stec B, Otwinowski Z, Bolin JT, Walter R, Axelrod B (2006) Crystal structure of soybean lipoxygenase L-1 at 1.4 å resolution. Biochemistry 35:10687–10701

    Article  Google Scholar 

  • Mosher S, Moeder W, Nishimura N, Jikumaru Y, Joo SH, Urquhart W, Klessig DF, Kim SK, Nambara E, Yoshioka K (2010) The lesion-mimic mutant cpr22 shows alterations in abscisic acid signaling and abscisic acid insensitivity in a salicylic acid-dependent manner. Plant Physiol 152:1901–1913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Padmalatha KV, Dhandapani G, Kanakachari M, Kumar S, Dass A, Patil DP, Rajamani V, Kumar K, Pathak R, Rawat B, Leelavathi S, Reddy PS, Jain N, Powar KN, Hiremath V, Katageri IS, Reddy MK, Solanke AU, Reddy VS, Kumar PA (2012) Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. Plant Mol Biol 78:223–246

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Tsuda K, Wang L, Coller J, Watanabe Y, Glazebrook J, Katagiri F (2010) Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsis immune signaling. PLoS Pathog 6:e1001011

    Article  PubMed Central  PubMed  Google Scholar 

  • Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002a) Monitoring the expression pattern of around 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002b) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Cram D, Huebert T, Zhou N, Parkin IA (2007) Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant’s response to cold stress. Plant Mol Biol 63:171–184

    Article  CAS  PubMed  Google Scholar 

  • Sharp RE, LeNoble ME, Else MA, Thorne ET, Gherardi F (2000) Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. J Exp Bot 51:1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Shin R, Kim MJ, Paek KH (2003) The CaTin1 (Capsicum annuum TMV-induced clone 1) and CaTin1-2 genes are linked head-to-head and share a bidirectional promoter. Plant Cell Physiol 44:549–554

    Article  CAS  PubMed  Google Scholar 

  • Shin R, An JM, Park CJ, Kim YJ, Joo S, Kim WT, Paek KH (2004) Capsicum annuum tobacco mosaic virus-induced clone 1 expression perturbation alters the plant’s response to ethylene and interferes with the redox homeostasis. Plant Physiol 135:561–573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Spollen WG, LeNoble ME, Samuels TD, Bernstein N, Sharp RE (2000) Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol 122:967–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomchick DR, Phan P, Cymborowski M, Minor W, Holman TR (2001) Structural and functional characterization of second-coordination sphere mutants of soybean lipoxygenase-1. Biochemistry 40:7509–7517

    Article  CAS  PubMed  Google Scholar 

  • Vivek PJ, Tuteja N, Soniya EV (2013) CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in Nicotiana tabacum. PLoS One 8:e76392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718

    Article  PubMed Central  PubMed  Google Scholar 

  • Xue GP, Way HM, Richardson T, Drenth J, Joyce PA, McIntyre CL (2011) Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant 4:697–712

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Han W, De Smet I, Talboys P, Loya R, Hassan A, Rong H, Jurgens G, Paul Knox J, Wang MH (2010) ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. Plant J 64:764–774

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao J (2011) Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol 75:365–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2004432), Republic of Korea (T.K.H.), and by the Fundación Séneca, Comunidad Autónoma de la Región de Murcia (A.A.). We thank K. Remele and W. Pfeifhofer for help with scopoletin determination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Roitsch.

Additional information

Tae Kyung Hyun, Alfonso Albacete and Eric van der Graaff have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyun, T.K., Albacete, A., van der Graaff, E. et al. The Arabidopsis PLAT domain protein1 promotes abiotic stress tolerance and growth in tobacco. Transgenic Res 24, 651–663 (2015). https://doi.org/10.1007/s11248-015-9868-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-015-9868-6

Keywords

Navigation