Skip to main content
Log in

Impact of the ahas transgene for herbicides resistance on biological nitrogen fixation and yield of soybean

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Studies on the effects of transgenes in soybean [Glycine max (L.) Merr.] and the associated use of specific herbicides on biological nitrogen fixation (BNF) are still few, although it is important to ensure minimal impacts on benefits provided by the root-nodule symbiosis. Cultivance CV127 transgenic soybean is a cultivar containing the ahas gene, which confers resistance to herbicides of the imidazolinone group. The aim of this study was to assess the effects of the ahas transgene and of imidazolinone herbicide on BNF parameters and soybean yield. A large-scale set of field experiments was conducted, for three cropping seasons, at nine sites in Brazil, with a total of 20 trials. The experiment was designed as a completely randomized block with four replicates and the following treatments: (T1) near isogenic transgenic soybean (Cultivance CV127) + herbicide of the imidazolinone group (imazapyr); (T2) near isogenic transgenic soybean + conventional herbicides; and (T3) parental conventional soybean (Conquista) + conventional herbicides; in addition, two commercial cultivars were included, Monsoy 8001 (M-SOY 8001) (T4), and Coodetec 217 (CD 217) (T5). At the R2 growth stage, plants were collected and BNF parameters evaluated. In general, there were no effects on BNF parameters due to the transgenic trait or associated with the specific herbicide. Similarly, at the final harvest, no grain-yield effects were detected related to the ahas gene or to the specific herbicide. However, clear effects on BNF and grain yield were attributed to location and cropping season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azevedo JL, Araujo WL (2003) Genetically modified crops: environmental and human health concerns. Mutat Res 544:223–233. doi:10.1016/j.mrrev.2003.07.002

    Article  CAS  PubMed  Google Scholar 

  • Bohm GMB, Rombaldi CV (2010) Genetic transformation and the use glyphosate on soil microbial, biological nitrogen fixation, quality and safety of genetically modified soybean. Cienc Rural 40:213–221. doi:10.1590/S0103-84782010000100037

    Article  CAS  Google Scholar 

  • Bohm GMB, Alves BJR, Urquiaga S, Boddey RM, Xavier GR, Hax F, Rombaldi CV (2009) Glyphosate- and imazethapyr-induced effects on yield, nodule mass and biological nitrogen fixation in field-grown glyphosate-resistant soybean. Soil Biol Biochem 41:420–422. doi:10.1016/j.soilbio.2008.11.002

    Article  CAS  Google Scholar 

  • Bohm GMB, Scheneider L, Castilhos D, Agostinetto D, Rombaldi CV (2011) Weed control, biomass and microbial metabolism of soil depending on the application of glyphosate and imazethapyr on crop soybeans. Semin Cienc Agrar 32:919–929. doi:10.5433/1679-0359.2011v32n3p919

    Article  CAS  Google Scholar 

  • Bruinsma M, Kowalchuk GA, van Veen JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertil Soils 37:329–337. doi:10.1007/s00374-003-0613-6

    Google Scholar 

  • Burke IC, Thomas WE, Allen JR, Collins J, Wilcut JW (2008) A comparison of weed control in herbicide-resistant, herbicide-tolerant, and conventional corn. Weed Technol 22:571–579. doi:10.1614/WT-07-184.1

    Article  CAS  Google Scholar 

  • Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80. doi:10.1080/00103627509366547

    Article  CAS  Google Scholar 

  • Cerdeira AL, Gazziero DLP, Duke SO, Matallo MB, Spadotto CA (2007) Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil. J Environ Sci Health Part B Pestic Contam Agric Wastes 42:539–549. doi:10.1080/03601230701391542

    Article  CAS  Google Scholar 

  • Chukwudebe A, Privalle L, Reed A, Wandelt C, Contri D, Dammann M, Groeters S, Kaspers U, Strauss V, van Ravenzwaay B (2012) Health and nutritional status of Wistar rats following subchronic exposure to CV127 soybeans. Food Chem Toxicol 50:956–971. doi:10.1016/j.fct.2011.11.034

    Article  CAS  PubMed  Google Scholar 

  • Darmency H (2013) Pleiotropic effects of herbicide-resistance genes on crop yield: a review. Pest Manag Sci 69:897–904. doi:10.1002/ps.3522

    Article  CAS  PubMed  Google Scholar 

  • Dini-Andreote F, Andreote FD, Costa R, Taketani RG, van Elsas JD, Araujo WL (2010) Bacterial soil community in a Brazilian sugarcane field. Plant Soil 336:337–349. doi:10.1007/s11104-010-0486-z

    Article  CAS  Google Scholar 

  • Dunfield KE, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus). Appl Environ Microbiol 69:7310–7318. doi:10.1128/AEM.69.12.7310-7318.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunfield KE, Germida JJ (2004) Impact of genetically modified crops on soil- and plant-associated microbial communities. J Environ Qual 33:806–815. doi:10.2134/jeq2004.0806

    Article  CAS  PubMed  Google Scholar 

  • Fang M, Kremer RJ, Motavalli PP, Davis G (2005) Bacterial diversity in rhizospheres of nontransgenic and transgenic corn. Appl Environ Microbiol 71:4132–4136. doi:10.1128/AEM.71.7.4132-4136.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Villalba R, Leon C, Dinelli G, Segura-Carretero A, Fernandez-Gutierrez A, Garcia-Canas V, Cifuentes A (2008) Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis-time-of-flight mass spectrometry. J Chromatogr A 1195:164–173. doi:10.1016/j.chroma.2008.05.018

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez N, Eyherabide JJ, Barcelonna MI, Gaspari A, Sanmartino S (1999) Effect of soil interacting herbicides on soybean nodulation in Balcarce, Argentina. Pesqui Agropecu Bras 34:1167–1173. doi:10.1590/S0100-204X1999000700008

    Article  Google Scholar 

  • Griffiths BS, Geoghegan IE, Robertson WM (2000) Testing genetically engineered potato, producing the lectins GNA and Con A, on non-target soil organisms and processes. J Appl Ecol 37:159–170. doi:10.1046/j.1365-2664.2000.00481.x

    Article  Google Scholar 

  • Griffiths BS, Caul S, Thompson J, Birch ANE, Cortet J, Andersen MN, Krogh PH (2007) Microbial and microfaunal community structure in cropping systems with genetically modified plants. Pedobiologia 51:195–206. doi:10.1016/j.pedobi.2007.04.002

    Article  Google Scholar 

  • Gyamfi S, Pfeifer U, Stierschneider M, Sessitsch A (2002) Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphere. FEMS Microbiol Ecol 41:181–190. doi:10.1016/S0168-6496(02)00290-8

    Article  CAS  PubMed  Google Scholar 

  • Herridge DF, Peoples MB (1990) Ureide assay for measuring nitrogen-fixation by nodulated soybean calibrated by N-15 methods. Plant Physiol 93:495–503. doi:10.1104/pp.93.2.495

    Article  Google Scholar 

  • Hungria M (1994) Metabolismo do carbono e do nitrogênio nos nódulos. In: Hungria M, Araujo RS (eds) Manual de métodos empregados em estudos de microbiologia agrícola. Embrapa SPI, Brasília, pp 250–283

    Google Scholar 

  • Hungria M, Mendes IC (2014) Nitrogen fixation with soybean: the perfect symbiosis? In: de Bruijn FJ (ed) Biological Nitrogen Fixation. Wiley-Blackwell, New Jersey, Hoboken (in press)

  • Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RNR, Mendes IC, Arihara J (2006) Nitrogen nutrition of soybean in Brazil: contributions of biological N-2 fixation and N fertilizer to grain yield. Can J Plant Sci 86:927–939

    Article  Google Scholar 

  • Hungria M, Mendes IC, Nakatani AS, Reis-Junior FB, Morais JZ, de Oliveira MCN, Fernandes MF (2014) Effects of glyphosate-resistant gene and herbicides on soybean crop: field trials monitoring biological nitrogen fixation and yield. Field Crop Res 158:43–54. doi:10.1016/j.fcr.2013.12.022

    Article  Google Scholar 

  • James C (2011) Global status of commercialized Biotech/GM crops: 2011. ISAAA Brief No.43. ISAAA, Ithaca, p 28

  • James C (2012) Global status of commercialized Biotech/GM crops: 2012. ISAAA Brief No.44. ISAAA, Ithaca, p 11

  • Kremer RJ, Means NE (2009) Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms. Eur J Agron 31:153–161. doi:10.1016/j.eja.2009.06.004

    Article  CAS  Google Scholar 

  • Kremer RJ, Means NE, Kim S (2005) Glyphosate affects soybean root exudation and rhizosphere micro-organisms. Int J Environ Anal Chem 85:1165–1174. doi:10.1080/03067310500273146

    Article  CAS  Google Scholar 

  • Lamarche J, Hamelin RC (2007) No evidence of an impact on the rhizosphere diazotroph community by the expression of Bacillus thuringiensis Cry1Ab toxin by Bt white spruce. Appl Environ Microbiol 73:6577–6583. doi:10.1128/AEM.00812-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu B, Zeng Q, Yan FM, Xu HG, Xu CR (2005) Effects of transgenic plants on soil microorganisms. Plant Soil 271:1–13. doi:10.1007/s11104-004-1610-8

    Article  CAS  Google Scholar 

  • Liu W, Lu HH, Wu W, Wei QK, Chen YX, Thies JE (2008) Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development. Soil Biol Biochem 40:475–486. doi:10.1016/j.soilbio.2007.09.017

    Article  CAS  Google Scholar 

  • Lynch JM, Benedetti A, Insam H, Nuti MP, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fertil Soils 40:363–385. doi:10.1007/s00374-004-0784-9

    Article  CAS  Google Scholar 

  • Malty JD, Siqueira JO, Moreira FMS (2006) Effects of glyphosate on soybean symbiotic microorganisms, in culture media and in greenhouse. Pesqui Agropecu Bras 41:285–291. doi:10.1590/S0100-204X2006000200013

    Article  Google Scholar 

  • Masoud SA, Zhu Q, Lamb C, Dixon RA (1996) Constitutive expression of an inducible beta-1,3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogen Phytophthora megasperma f sp medicaginis, but does not reduce disease severity of chitin-containing fungi. Transgenic Res 5:313–323. doi:10.1007/bf01968941

    Article  CAS  Google Scholar 

  • Moldes CA, Camina JM, Medici LO, Tsai SM, Azevedo RA (2012) Physiological effects of glyphosate over amino acid profile in conventional and transgenic soybean (Glycine max). Pestic Biochem Physiol 102:134–141. doi:10.1016/j.pestbp.2011.12.004

    Article  CAS  Google Scholar 

  • Montero FA, Filippi KM, Sagardoy MA (2001) Nodulación y nutrición nitrogenada en sojas convencionales y resistentes a glifosato inoculadas con Bradyrhizobium japonicum. Cienc Suelo 19:159–162

    CAS  Google Scholar 

  • Powell JR, Gulden RH, Hart MM, Campbell RG, Levy-Booth DJ, Dunfield KE, Pauls KP, Swanton CJ, Trevors JT, Klironomos JN (2007) Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. Appl Environ Microbiol 73:4365–4367. doi:10.1128/AEM.00594-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Powell JR, Campbell RG, Dunfield KE, Gulden RH, Hart MM, Levy-Booth DJ, Klironomos JN, Pauls KP, Swanton CJ, Trevors JT, Antunes PM (2009) Effect of glyphosate on the tripartite symbiosis formed by Glomus intraradices, Bradyrhizobium japonicum, and genetically modified soybean. Appl Soil Ecol 41:128–136. doi:10.1016/j.apsoil.2008.10.002

    Article  Google Scholar 

  • Qaim M, Traxler G (2005) Roundup Ready soybeans in Argentina: farm level and aggregate welfare effects. Agric Econ 32:73–86. doi:10.1111/j.0169-5150.2005.00006.x

    Article  Google Scholar 

  • Souza RA, Babujia LC, Silva AP, Guimaraes MD, Arias CA, Hungria M (2013) Impact of the ahas transgene and of herbicides associated with the soybean crop on soil microbial communities. Transgenic Res 22:877–892. doi:10.1007/s11248-013-9691-x

    Article  CAS  PubMed  Google Scholar 

  • Steel RGD, Torrie JH (1980) In: Principles and procedures or statistics, a biometrical approach. McGraw-Hill Book Co, New York, pp 185–186

    Google Scholar 

  • Suarez R, Marquez J, Shishkova S, Hernandez G (2003) Overexpression of alfalfa cytosolic glutamine synthetase in nodules and flowers of transgenic Lotus japonicus plants. Physiol Plant 117:326–336. doi:10.1034/j.1399-3054.2003.00053.x

    Article  CAS  PubMed  Google Scholar 

  • Thomas WE, Everman WJ, Allen J, Collins J, Wilcut JW (2007) Economic assessment of weed management systems in glufosinate-resistant, glyphosate-resistant, imidazolinone-tolerant, and nontransgenic corn. Weed Technol 21:191–198. doi:10.1614/WT-06-054.1

    Article  CAS  Google Scholar 

  • Vogels SGD, Van Der Drift C (1970) Differential analysis of glyoxylate derivatives. Anal Biochem 33:143–157. doi:10.1016/0003-2697(70)90448-3

    Article  CAS  PubMed  Google Scholar 

  • Weinert N, Meincke R, Schloter M, Berg G, Smalla K (2010) Effects of genetically modified plants on soil microorganisms. In: Mitchell R, Gu JD (eds) Environmental Microbiology. John Wiley & Sons Inc, Hoboken, pp 235–258

    Chapter  Google Scholar 

  • Zobiole LHS, Oliveira RS, Kremer RJ, Constantin J, Yamada T, Castro C, Oliveira FA, Oliveira A (2010) Effect of glyphosate on symbiotic N-2 fixation and nickel concentration in glyphosate-resistant soybeans. Appl Soil Ecol 44:176–180. doi:10.1016/j.apsoil.2009.12.003

    Article  Google Scholar 

Download references

Acknowledgments

To Adolfo Vitorio Ulbrich (BASF), for the experiment and personal coordination of the experiments, and to Dr. Allan R. J. Eaglesham and Dr. Liliane M. M. Henning for suggestions on the manuscript. A.S. Nakatani acknowledges a postdoc fellow from Fundação Araucária/CAPES and M. Hungria is also research fellows from CNPq (National Council for Scientific and Technological Development). The microbiology group of Embrapa Soja is also supported by CNPq (Repensa, 562008/2010-1 and Universal 470515/2012-0). Approved for publication by the Editorial Board of Embrapa Soja as manuscript 04/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariangela Hungria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hungria, M., Nakatani, A.S., Souza, R.A. et al. Impact of the ahas transgene for herbicides resistance on biological nitrogen fixation and yield of soybean. Transgenic Res 24, 155–165 (2015). https://doi.org/10.1007/s11248-014-9831-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-014-9831-y

Keywords

Navigation