Skip to main content

Advertisement

Log in

Generation of mice with conditional ablation of the Cd40lg gene: new insights on the role of CD40L

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

CD40 ligand (CD40L) acts as an immune modulator in activated T cells, and mutations in the extracellular domain are associated to X-linked hyper IgM syndrome. A role for platelet CD40L in mediating thrombotic and inflammatory processes in atherosclerosis has also been reported. Using the Cre/loxP recombination technology we generated four knockout lines of mice with deletion of the Cd40lg gene restricted to the hematopoietic system. Mouse lines with expression of Cre recombinase driven by the Tie2, Vav1, or CD4 promoters showed in vivo ablation of CD40L in leukocytes and platelets. In contrast, in mice with Cre expression driven by the megakaryocyte lineage-restricted Pf4 promoter, abolition of CD40L expression was observed in megakaryocytes cultured in vitro, but not in circulating platelets. Characterization of these animals revealed reduced in vivo thrombogenesis and defective activation of washed CD40L-deficient platelets, suggesting that membrane-bound CD40L is involved in the control of haemostasis acting as a platelet co-activator. In addition, we report the practically absence of CD40L in mouse and human endothelial cells, as well as the detection of an exon 3-deleted CD40L transcript in both platelets and leukocytes of mouse and human origin. Finally, compared with their corresponding littermate floxed controls, Cre+ mice carrying CD40-deficient leukocytes did not exhibit increased IgM levels, and reduction of IgA and IgG levels was statistically significant only in Tie2-Cre+ mice, suggesting that expression of CD40L in an earlier developmental step may be determinant in the regulation of the class switch recombination process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andre P, Nannizzi-Alaimo L, Prasad SK, Phillips DR (2002a) Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation 106(8):896–899

    Article  PubMed  Google Scholar 

  • Andre P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, Phillips DR, Wagner DD (2002b) CD40L stabilizes arterial thrombi by a beta3 integrin-dependent mechanism. Nat Med 8(3):247–252

    Article  CAS  PubMed  Google Scholar 

  • Aruffo A, Farrington M, Hollenbaugh D, Li X, Milatovich A, Nonoyama S, Bajorath J, Grosmaire LS, Stenkamp R, Neubauer M et al (1993) The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72(2):291–300

    Article  CAS  PubMed  Google Scholar 

  • Aversa G, Punnonen J, Carballido JM, Cocks BG, de Vries JE (1994) CD40 ligand-CD40 interaction in Ig isotype switching in mature and immature human B cells. Semin Immunol 6(5):295–301

    Article  CAS  PubMed  Google Scholar 

  • Basch RS, Dolzhanskiy A, Zhang XM, Karpatkin S (1996) The development of human megakaryocytes. II. CD4 expression occurs during haemopoietic differentiation and is an early step in megakaryocyte maturation. Br J Haematol 94(3):433–442

    Article  CAS  PubMed  Google Scholar 

  • de Boer J, Williams A, Skavdis G, Harker N, Coles M, Tolaini M, Norton T, Williams K, Roderick K, Potocnik AJ, Kioussis D (2003) Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur J Immunol 33(2):314–325

    Article  PubMed  Google Scholar 

  • Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229(1):152–172

    Article  CAS  PubMed  Google Scholar 

  • Elzey BD, Ratliff TL, Sowa JM, Crist SA (2011) Platelet CD40L at the interface of adaptive immunity. Thromb Res 127(3):180–183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geraldes P, Gagnon S, Hadjadj S, Merhi Y, Sirois MG, Cloutier I, Tanguay JF (2006) Estradiol blocks the induction of CD40 and CD40L expression on endothelial cells and prevents neutrophil adhesion: an ERalpha-mediated pathway. Cardiovasc Res 71(3):566–573

    Article  CAS  PubMed  Google Scholar 

  • Graf D, Muller S, Korthauer U, van Kooten C, Weise C, Kroczek RA (1995) A soluble form of TRAP (CD40 ligand) is rapidly released after T cell activation. Eur J Immunol 25(6):1749–1754

    Article  CAS  PubMed  Google Scholar 

  • Hassan GS, Merhi Y, Mourad M (2012) CD40 Ligand: a neo-inflammatory molecule in vascular diseases. Immunobiology 217:521–532

    Article  CAS  PubMed  Google Scholar 

  • He C, Hu H, Braren R, Fong SY, Trumpp A, Carlson TR, Wang RA (2008) c-myc in the hematopoietic lineage is crucial for its angiogenic function in the mouse embryo. Development 135(14):2467–2477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heinold A, Hanebeck B, Daniel V, Heyder J, Tran TH, Dohler B, Greil J, Muller FM (2010) Pitfalls of “hyper”-IgM syndrome: a new CD40 ligand mutation in the presence of low IgM levels. A case report and a critical review of the literature. Infection 38(6):491–496

    Article  CAS  PubMed  Google Scholar 

  • Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, Kroczek RA (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391(6667):591–594

    Article  CAS  PubMed  Google Scholar 

  • Hsu HC, Ema H, Osawa M, Nakamura Y, Suda T, Nakauchi H (2000) Hematopoietic stem cells express Tie-2 receptor in the murine fetal liver. Blood 96(12):3757–3762

    CAS  PubMed  Google Scholar 

  • Inwald DP, McDowall A, Peters MJ, Callard RE, Klein NJ (2003) CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res 92(9):1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Jelcick AS, Yuan Y, Leehy BD, Cox LC, Silveira AC, Qiu F, Schenk S, Sachs AJ, Morrison MA, Nystuen AM, DeAngelis MM, Haider NB (2011) Genetic variations strongly influence phenotypic outcome in the mouse retina. PLoS ONE 6(7):e21858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230(2):230–242

    Article  CAS  PubMed  Google Scholar 

  • Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, Perez-Melgosa M, Sweetser MT, Schlissel MS, Nguyen S, Cherry SR, Tsai JH, Tucker SM, Weaver WM, Kelso A, Jaenisch R, Wilson CB (2001) A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15(5):763–774

    Article  CAS  PubMed  Google Scholar 

  • Levy J, Espanol-Boren T, Thomas C, Fischer A, Tovo P, Bordigoni P, Resnick I, Fasth A, Baer M, Gomez L, Sanders EA, Tabone MD, Plantaz D, Etzioni A, Monafo V, Abinun M, Hammarstrom L, Abrahamsen T, Jones A, Finn A, Klemola T, DeVries E, Sanal O, Peitsch MC, Notarangelo LD (1997) Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr 131(1 Pt 1):47–54

    Article  CAS  PubMed  Google Scholar 

  • Li C, Li J, Li Y, Lang S, Yougbare I, Zhu G, Chen P, Ni H (2012) Crosstalk between platelets and the immune system: old systems with new discoveries. Adv Hematol 2012:384685

    PubMed Central  PubMed  Google Scholar 

  • Lievens D, Zernecke A, Seijkens T, Soehnlein O, Beckers L, Munnix IC, Wijnands E, Goossens P, van Kruchten R, Thevissen L, Boon L, Flavell RA, Noelle RJ, Gerdes N, Biessen EA, Daemen MJ, Heemskerk JW, Weber C, Lutgens E (2010) Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 116(20):4317–4327

    Article  CAS  PubMed  Google Scholar 

  • Mach F, Schonbeck U, Sukhova GK, Bourcier T, Bonnefoy JY, Pober JS, Libby P (1997) Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis. Proc Natl Acad Sci USA 94(5):1931–1936

    Article  CAS  PubMed  Google Scholar 

  • Montagutelli X (2000) Effect of the genetic background on the phenotype of mouse mutations. J Am Soc Nephrol 11(Suppl 16):S101–S105

    PubMed  Google Scholar 

  • Nowakowski A, Alonso-Martin S, Arias-Salgado EG, Fernandez D, Vilar M, Ayuso MS, Parrilla R (2011) Megakaryocyte gene targeting mediated by restricted expression of recombinase Cre. Thromb Haemost 105(1):138–144

    Article  CAS  PubMed  Google Scholar 

  • Nurden AT (2011) Platelets, inflammation and tissue regeneration. Thromb Haemost 105(Suppl 1):S13–S33

    Article  CAS  PubMed  Google Scholar 

  • Pericacho M, Alonso-Martin S, Larrucea S, Gonzalez-Manchon C, Fernandez D, Sanchez I, Ayuso MS, Parrilla R (2011) Diminished thrombogenic responses by deletion of the Podocalyxin gene in mouse megakaryocytes. PLoS ONE 6(10):e26025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prasad KS, Andre P, He M, Bao M, Manganello J, Phillips DR (2003) Soluble CD40 ligand induces beta3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling. Proc Natl Acad Sci USA 100(21):12367–12371

    Article  CAS  PubMed  Google Scholar 

  • Reul RM, Fang JC, Denton MD, Geehan C, Long C, Mitchell RN, Ganz P, Briscoe DM (1997) CD40 and CD40 ligand (CD154) are coexpressed on microvessels in vivo in human cardiac allograft rejection. Transplantation 64(12):1765–1774

    Article  CAS  PubMed  Google Scholar 

  • Schonbeck U, Mach F, Libby P (2000) CD154 (CD40 ligand). Int J Biochem Cell Biol 32(7):687–693

    Article  CAS  PubMed  Google Scholar 

  • Seijkens T, Engel D, Tjwa M, Lutgens E (2010) The role of CD154 in haematopoietic development. Thromb Haemost 104(4):693–701

    Article  CAS  PubMed  Google Scholar 

  • Semple JW, Italiano JE Jr, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11(4):264–274

    Article  CAS  PubMed  Google Scholar 

  • Shimadzu M, Nunoi H, Terasaki H, Ninomiya R, Iwata M, Kanegasaka S, Matsuda I (1995) Structural organization of the gene for CD40 ligand: molecular analysis for diagnosis of X-linked hyper-IgM syndrome. Biochim Biophys Acta 1260(1):67–72

    Article  PubMed  Google Scholar 

  • Tiedt R, Schomber T, Hao-Shen H, Skoda RC (2007) Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo. Blood 109(4):1503–1506

    Article  CAS  PubMed  Google Scholar 

  • Tousoulis D, Androulakis E, Papageorgiou N, Briasoulis A, Siasos G, Antoniades C, Stefanadis C (2010) From atherosclerosis to acute coronary syndromes: the role of soluble CD40 ligand. Trends Cardiovasc Med 20:153–164

    Article  CAS  PubMed  Google Scholar 

  • Turlo KA, Gallaher SD, Vora R, Laski FA, Iruela-Arispe ML (2010) When Cre-mediated recombination in mice does not result in protein loss. Genetics 186(3):959–967

    Article  CAS  PubMed  Google Scholar 

  • Wagner AH, Guldenzoph B, Lienenluke B, Hecker M (2004) CD154/CD40-mediated expression of CD154 in endothelial cells: consequences for endothelial cell-monocyte interaction. Arterioscl Thromb Vasc Biol 24(4):715–720

    Article  CAS  PubMed  Google Scholar 

  • Wolf D, Jehle F, Ortiz Rodriguez A, Dufner B, Hoppe N, Colberg C, Lozhkin A, Bassler N, Rupprecht B, Wiedemann A, Hilgendorf I, Stachon P, Willecke F, Febbraio M, von zur Muhlen C, Binder CJ, Bode C, Zirlik A, Peter K (2012) CD40L deficiency attenuates diet-induced adipose tissue inflammation by impairing immune cell accumulation and production of pathogenic IgG-antibodies. PLoS ONE 7(3):e33026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu J, Foy TM, Laman JD, Elliott EA, Dunn JJ, Waldschmidt TJ, Elsemore J, Noelle RJ, Flavell RA (1994) Mice deficient for the CD40 ligand. Immunity 1(5):423–431

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Chung I, O’Gorman MR, Scholl PR (2001) Coexpression of normal and mutated CD40 ligand with deletion of a putative RNA lariat branchpoint sequence in X-linked hyper-IgM syndrome. Clin Immunol 99(3):334–339

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CIBER de Enfermedades Raras (CIBERER) is an initiative of the Spanish Health Institute Carlos III (ISCIII). The work was funded with grants SAF2007-61701 and BFU2010-15237 from the Spanish Plan of Research & Development, and grant PIE 201020E018 from CSIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Consuelo González-Manchón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horrillo, A., Fontela, T., Arias-Salgado, E.G. et al. Generation of mice with conditional ablation of the Cd40lg gene: new insights on the role of CD40L. Transgenic Res 23, 53–66 (2014). https://doi.org/10.1007/s11248-013-9743-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9743-2

Keywords

Navigation