Skip to main content
Log in

Selective Furfural Hydrogenation to Furfuryl Alcohol Using Cu-Based Catalysts Supported on Clay Minerals

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Copper supported on clay minerals (bentonite and sepiolite) catalysts, with copper loading between 15 and 60 wt%, have been synthesized by precipitation-deposition, calcination and subsequent reduction. The catalysts were characterized by X-ray diffraction, H2 temperature programmed reduction (H2-TPR), N2 adsorption–desorption at −196 °C and X-ray photoelectron spectroscopy, being detected spherical metal Cu-particles with variable size, mainly located on the surface of clays. The evaluation of their catalytic performance in the furfural (FUR) hydrogenation in gas phase has demonstrated that the use of bentonite as support allows attaining conversion values of 83% for 45Cu-Bent, whereas only a 52% is reached by the 45Cu-Sep catalyst. All catalysts were highly selective towards furfuryl alcohol (FOL), reaching yields of 72% for 45Cu-Bent and 45% for 45Cu-Sep after 5 h of time-on-stream (TOS) at 210 °C, by using a H2:FUR molar ratio of 11.5 and a WHSV of 1.5 h−1. However, all catalysts suffer a progressive deactivation with TOS, by deposition of reactants and product (FOL and FUR), as well as the oxidation of the active phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lange J-P, Van Der Heide E, Buijtenen JV, Price R (2012) Furfural-A promising platform for lignocellulosic biofuels. ChemSusChem 5:150–166

    Article  CAS  Google Scholar 

  2. Li X, Jia P, Wang T (2016) Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal 6:7621–7640

    Article  CAS  Google Scholar 

  3. Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201

    Article  CAS  Google Scholar 

  4. Naik N, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energy Rev 14:578–597

    Article  CAS  Google Scholar 

  5. Alonso DM, Wettsteinab SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075–8098

    Article  CAS  Google Scholar 

  6. Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products. Elsevier, Amsterdam

    Google Scholar 

  7. Hoydonckx HE, van Rhijn WM, van Rhijn W, de Vos DE, Jacobs PA (2016) Furfural and derivatives. Wiley, Weinheim

    Google Scholar 

  8. Wettsteing SG, Alonso DM, Gurbuz EI, Dumesic JA (2012) A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Curr Opin Chem Eng 1:218–224

    Article  Google Scholar 

  9. Yang Y, Du Z, Huang Y, Lu F, Wang F, Gao J (2013) Conversion of furfural into cyclopentanone over Ni–Cu bimetallic catalysts. Green Chem 15:1932–1940

    Article  CAS  Google Scholar 

  10. Hronec M, Fulajtarova K, Micusik M (2013) Influence of furanic polymers on selectivity of furfural rearrangement to cyclopentanone. Appl Catal A 468:426–431

    Article  CAS  Google Scholar 

  11. Sitthisa S, Pham T, Prasomsri T, Sooknoi T, Mallinson RG, Resasco DE (2011) Conversion of furfural and 2-methylpentanal on Pd/SiO2 and Pd–Cu/SiO2 catalysts. J Catal 280:17–27

    Article  CAS  Google Scholar 

  12. Yan K, Wu G, Lafleur T, Jarvis C (2014) Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew Sustain Energy Rev 38:663–676

    Article  CAS  Google Scholar 

  13. Brown Ripin DH, Vetelino M (2003) 2-Methyltetrahydrofuran as an alternative to dichlorometane in 2-phase reactions. Synlett 15:2353–2353

    Article  Google Scholar 

  14. Rojas HA, Guerra GB, Murcia JJ, Nuñez PR (2007) Scientia et Technica Año XIII, No 36. Universidad Tecnológica de Pereira ISSN 0122–1701

  15. Kanetaka J, Asano T, Masamune S (1970) New process for production of tetrahydrofuran. Ind Eng Chem 62:24–32

    Article  CAS  Google Scholar 

  16. Rao R, Dandekar A, RTK Baker, Vannice MA (1997) Properties of copper chromite catalysts in hydrogenation reactions. J Catal 1171:406–419

    Article  Google Scholar 

  17. Vargas-Hernández D, Rubio-Caballero JM, Mérida-Robles JM, Moreno-Tost R, Santamaría-González J, Maireles-Torres P (2014) Furfuryl alcohol from furfural hydrogenation over copper supported on SBA-15 silica catalysts. J Mol Catal A 383:106–113

    Article  Google Scholar 

  18. Jiménez-Gómez CP, Cecilia JA, Durán-Martín D, Moreno-Tost R, Santamaría-González J, Mérida-Robles J, Mariscal R, Maireles-Torres P (2016) Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts. J Catal 336:107–115

    Article  Google Scholar 

  19. Seo G, Chon H (1981) Hydrogenation of furfural over copper-containing catalysts. J Catal 67:424–429

    Article  CAS  Google Scholar 

  20. Sitthisa S, Resasco DE (2011) Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni. Catal Lett 141:784–791

    Article  CAS  Google Scholar 

  21. Hronec M, Fulajtarova K (2012) Selective transformation of furfural to cyclopentanone. Catal Commun 24:100–104

    Article  CAS  Google Scholar 

  22. Reddy BM, Reddy GK, Rao KN, Khan A, Ganesh I (2007) Synthesis of monophasic Ce0.5Zr0.5O2 solid solution by microwave-induced combustion method. J Mol Catal A 265:276–282

    Article  CAS  Google Scholar 

  23. An K, Musselwhite N, Kennedy G, Pushkarev VV, Baker LR, Somorjai GA (2013) Preparation of mesoporous oxides and their support effects on Pt nanoparticle catalysts in catalytic hydrogenation of furfural. J Collid Interf Sci 392:122–128

    Article  CAS  Google Scholar 

  24. Vetere V, Merlo AB, Ruggera JF, Casella ML (2010) Transition metal-based bimetallic catalysts for the chemoselective hydrogenation of furfuraldehyde. J Braz Chem Soc 21:914–920

    Article  CAS  Google Scholar 

  25. Sitthisa S, An W, Resasco DE (2011) Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts. J Catal 284:90–101

    Article  CAS  Google Scholar 

  26. Nakagawa Y, Nakazawa H, Watanabe H, Tomishige K (2012) Total hydrogenation of furfural over a silica-supported nickel catalyst prepared by the reduction of a nickel nitrate precursor. ChemCatChem 4:1791–1797

    Article  CAS  Google Scholar 

  27. Nagaraja BM, SivaKumar V, Shasikala V, Padmasri AH, Raju BD, Rama Rao KS (2003) A highly efficient Cu/MgO catalyst for vapour phase hydrogenation of furfural to furfuryl alcohol. Catal Commun 4:287–293

    Article  CAS  Google Scholar 

  28. Nagaraja BM, Padmasri AH, Raju BD, Rama Rao KS (2007) A highly active Cu–MgO–Cr2O3 catalyst for simultaneous synthesis of furfuryl alcohol and cyclohexanone by a novel coupling route-combination of furfural hydrogenation and cyclohexanol dehydrogenation. J Mol Catal A 265:90–97

    Article  CAS  Google Scholar 

  29. Jiménez-Gómez CP, Cecilia JA, Márquez-Rodríguez I, Moreno-Tost R, Santamaría-González J, Mérida-Robles J, Maireles-Torres P (2016) Gas-phase hydrogenation of furfural over Cu/CeO2 catalysts. Catal Today 279:327–338

    Article  Google Scholar 

  30. Hao XY, Zhou W, Wang JW, Zhang YQ, Liu S (2005) A novel catalyst for the selective hydrogenation of furfural to furfuryl alcohol. Chem Lett 34:1000–1001

    Article  CAS  Google Scholar 

  31. Sitthisa S, Sooknoi T, Ma Y, Balbuena PB, Resasco DE (2011) Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts. J Catal 277:1–13

    Article  CAS  Google Scholar 

  32. Dong F, Zhu Y, Zheng H, Zhu Y, Li X, Li YY (2015) Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran: the synergistic effect of metal and acid sites. J Mol Catal A 398:140–148

    Article  CAS  Google Scholar 

  33. Vaccari A (1999) Clays and catalysis: a promising future. Appl Catal Sci 14:161–198

    CAS  Google Scholar 

  34. Santarén J, Sanz J, Ruiz-Hitzky E (1990) Structural fluorine in sepiolite. Clays Clay Miner 38:63–68

    Article  Google Scholar 

  35. Brauner K, Preisinger A (1956) Structure and formation of the sepiolite. Tscher Miner Petrog 6:120–140

    Article  CAS  Google Scholar 

  36. Cecilia JA, García-Sancho C, Franco F (2013) Montmorillonite based porous clay heterostructures: influence of Zr in the structure and acidic properties. Microporous Mesoporous Mater 176:95–102

    Article  CAS  Google Scholar 

  37. Caballero E, Reyes E, Linares J, Huertas F (1985) The bentonites of the southern area of Cabo de Gata (Almeria). geochemistry and mineralogy. Miner Petrogr Acta 29:187–196

    Google Scholar 

  38. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31

    Article  CAS  Google Scholar 

  39. Alcântara ACS, Darder M, Aranda P, Ruíz-Hitzky E (2012) Eur J Inorg Chem 32:5216–5224

    Article  Google Scholar 

  40. Franco F, Pozo M, Cecilia JA, Benítez Guerrero M, Lorenzo M (2016) Effectiveness of microwave assisted acid treatment on dioctahedral and trioctahedral smectites. The influence of octahedral composition. Appl Clay Sci 120:70–80

    Article  CAS  Google Scholar 

  41. Franco F, Pozo M, Cecilia JA, Benítez-Guerrero M, Pozo E, Martín Rubí JA (2014) Microwave assisted acid treatment of sepiolite: the role of composition and “crystallinity”. Appl Clay Sci 102:15–27

    Article  CAS  Google Scholar 

  42. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodríguez-Reinoso F, Rouquerol J, Sing SW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  43. Beydoun K, Doucet H (2011) Cyclopentyl methyl ether: an alternative solvent for palladium-catalyzed direct arylation of heteroaromatics. ChemSusChem 4:526–534

    Article  CAS  Google Scholar 

  44. Furimsky E, Massoth FE (1999) Deactivation of hydroprocessing catalysts. Catal Today 52:381–495.

    Article  CAS  Google Scholar 

  45. Rioux RM, Vannice MA (2003) Hydrogenation/dehydrogenation reactions: isopropanol dehydrogenation over copper catalysts. J Catal 216:362–375

    Article  CAS  Google Scholar 

  46. Liu D, Zemlyanov D, Wu T, Lobo-Lapidus RJ, Dumesic JA, Miller JT, Marshall CL (2013) Deactivation mechanistic studies of copper chromite catalyst for selective hydrogenation of 2-furfuraldehyde. J Catal 299:336–345

    Article  CAS  Google Scholar 

  47. Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189

Download references

Acknowledgements

The authors are grateful to financial support from the Spanish Ministry of Economy and Competitiveness (CTQ2015-64226-C03-3-R project), Junta de Andalucía (RNM-1565) and FEDER (European Union) funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Cecilia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2074 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Gómez, C.P., Cecilia, J.A., Moreno-Tost, R. et al. Selective Furfural Hydrogenation to Furfuryl Alcohol Using Cu-Based Catalysts Supported on Clay Minerals. Top Catal 60, 1040–1053 (2017). https://doi.org/10.1007/s11244-017-0804-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0804-2

Keywords

Navigation