Skip to main content
Log in

Effect of Alumina Phase Transformation on Stability of Low-Loaded Pd-Rh Catalysts for CO Oxidation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Bimetallic Pd-Rh catalysts with precious metal loading of 0.2 wt% was prepared by incipient wetness impregnation of the support (γ-Al2O3 or δ-Al2O3) with dual complex salt [Pd(NH3)4]3 [Rh(NO2)6]2. Monometallic Pd and Rh catalysts as well as its mechanical mixture were used as the reference samples. All samples were exposed for in situ prompt thermal aging procedure, and characterized by EPR spectroscopy, UV–Vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. The nature of the support was found to have strong effect on high temperature stability of the samples. δ-Al2O3 having non-uniform phase structure due to presence of θ-Al2O3 and α-Al2O3 traces causes the concentrating of rhodium near the interphase boundary, thus changing the mechanism of Rh3+ bulk diffusion if compare with γ-Al2O3. No noticeable anchoring effects were observed for bimetallic Pd-Rh samples neither in terms of Rh bulk diffusion nor with regard to the Pd sintering. It has been found experimentally that phase transformation of γ-Al2O3 at high temperatures does not play dramatic role for the deactivation of bimetallic Pd-Rh active species anchored to the electron-donor site of the support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Heck RM, Farauto RJ (2002) Catalytic air pollution control: commercial technology, 2nd edn. Wiley, New York

    Google Scholar 

  2. Renzas JR, Huang WY, Zhang YW, Grass ME, Hoang D, Alayoglu S, Butcher DR, Tao F, Liu Z, Somorjai GA (2011) Phys Chem Chem Phys 13:2556–2562

    Article  CAS  Google Scholar 

  3. Renzas JR, Huang WY, Zhang YW, Grass ME, Somorjai GA (2011) Catal Lett 141:235–241

    Article  CAS  Google Scholar 

  4. Williamson WB, Linden DG, Summers JC (1991) High-temperature three-way catalyst for treating automotive exhaust gases. U.S. Patent 5,041,407

  5. Williamson WB, Silver RG, Summers JC (1997) Paladium-containing three-way automotive catalysts having unique support. U.S. Patent 5,672,557

  6. Foong JS, Rabinowitz HN (2003) Hydrogen sulfide-suppressing catalyst compositions. U.S. Patent Application Publication 2003/0158037

  7. Nunan JG et al. (2012) Three-way catalyst having an upstream single-layer catalyst. U.S. Patent Application Publication 2012/0128557

  8. Nunan JG et al. (2012) Three-way catalyst having an upstream multi-layer catalyst. U.S. Patent 8,323,599

  9. He H, Dai HX, Wong KW, Au CT (2003) Appl Catal A Gen 251:61–74

    Article  CAS  Google Scholar 

  10. Wu X, Wu X, Liang Q, Fan J, Weng D, Xie Z, Wei S (2007) Solid State Sci 9:636–643

    Article  CAS  Google Scholar 

  11. Fan J, Wu X, Yang L, Weng D (2007) Catal Today 126:303–312

    Article  CAS  Google Scholar 

  12. He X, Sun J, Huan Y, Hu J, Yang D (2010) J Rare Earth 28:59–63

    Article  CAS  Google Scholar 

  13. Zhao B, Wang Q, Li G, Zhou R (2013) J Environ Chem Eng 1:534–543

    Article  CAS  Google Scholar 

  14. López Granados M, Cabello Galisteo FC, Mariscal R, Alifanti M, Gurbani A, Fierro JLG, Fernández-Ruíz R (2006) Appl Surf Sci 252:8442–8450

    Article  Google Scholar 

  15. Nunan JG, Wiliamson WB, Robota HJ, Henk MG (1995) SAE Tech Pap No. 950258

  16. Nieuwenhuys BE (1999) Adv Catal 44:259–328

    CAS  Google Scholar 

  17. Heemeier M, Frank M, Libuda J, Wolter K, Kuhlenbeck H, Baumer M, Freund HJ (2000) Catal Lett 68:19–24

    Article  CAS  Google Scholar 

  18. Stoyanovskii VO, Vedyagin AA, Aleshina GI, Volodin AM, Noskov AS (2009) Appl Catal B Environ 90:141–146

    Article  CAS  Google Scholar 

  19. Vedyagin AA, Gavrilov MS, Volodin AM, Stoyanovskii VO, Slavinskaya EM, Mishakov IV, Shubin YV (2013) Top Catal 56:1008–1014

    Article  CAS  Google Scholar 

  20. Vedyagin AA, Volodin AM, Stoyanovskii VO, Mishakov IV, Medvedev DA, Noskov AS (2011) Appl Catal B Environ 103:397–403

    Article  CAS  Google Scholar 

  21. Vedyagin AA, Volodin AM, Stoyanovskii VO, Kenzhin RM, Slavinskaya EM, Mishakov IV, Plyusnin PE, Shubin YV (2014) Catal Today 238:80–86

    Article  CAS  Google Scholar 

  22. Araya P, Díaz V (1997) J Chem Soc, Faraday Trans 93:3887–3891

    Article  CAS  Google Scholar 

  23. Shubin YuV, Plyusnin PE, Korenev SV (2015) J Alloy Compd 622:1055–1060

    Article  CAS  Google Scholar 

  24. Matsouka V, Konsolakis M, Yentekakis IV, Papavasiliou A, Tsetsekou A, Boukos N (2011) Top Catal 54:1124–1134

    Article  CAS  Google Scholar 

  25. Zheng Q, Farrauto R, Deeba M (2015) Catalysts 5:1797–1814

    Article  CAS  Google Scholar 

  26. Nazarpoor Z, Golden SJ (2014) Thermally stable compositions of OSM free of rare earth metals. U.S. Patent 8,853,121

  27. Wu X, Xu L, Weng D (2004) Appl Surf Sci 221:375–383

    Article  CAS  Google Scholar 

  28. Shackelford JF, Doremus RH (2008) Ceramic and glass materials: structure, properties and processing. Springer Science + Business Media, New York

    Book  Google Scholar 

  29. Powder Diffraction File. PDF-2/Release 2009: International Centre for Diffraction Data. USA

  30. Zotov RA, Molchanov VV, Volodin AM, Bedilo AF (2011) J Catal 278:71–77

    Article  CAS  Google Scholar 

  31. Boehm HP, Knözinger H, Anderson JR, Boudart M (1983) Catalysis-science and technology, vol IV. Springer-Verlag, Berlin

    Google Scholar 

  32. Loong CK, Richardson JW Jr, Ozawa M (1997) J Alloy Compd 250:356–359

    Article  CAS  Google Scholar 

  33. Tijburg IM, De Bruin H, Elberse PA, Geus JW (1991) J Mater Sci 26:5945–5949

    Article  CAS  Google Scholar 

  34. Bowen P, Carry C (2002) Powder Technol 128:248–255

    Article  CAS  Google Scholar 

  35. Medvedev DA, Rybinskaya AA, Kenzhin RM, Volodin AM, Bedilo AF (2012) Phys Chem Chem Phys 14:2587–2598

    Article  CAS  Google Scholar 

  36. Gaspar AB, Dieguez LC (2000) Appl Catal A-Gen 201:241–251

    Article  CAS  Google Scholar 

  37. Tessier D, Rakai A, Bozon-Verduraz F (1992) Phys Chem Chem Phys 88:741–749

    CAS  Google Scholar 

  38. Ciuparu D, Bensalem A, Pfefferle L (2000) Appl Catal B-Environ 26:241–255

    Article  CAS  Google Scholar 

  39. Nilsson PO, Shivaraman MS (1979) J Phys C Solid State 12:1423–1427

    Article  CAS  Google Scholar 

  40. Espinosa-Alonso L, de Jong KP, Weckhuysen BM (2010) Phys Chem Chem Phys 12:97–107

    Article  CAS  Google Scholar 

  41. Elding LI (1972) Inorg Chim Acta 6:647–651

    Article  CAS  Google Scholar 

  42. Rakai A, Tessier D, Bozon-Verduraz F (1992) New J Chem 16:869–875

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Russian Academy of Sciences and Federal Agency of Scientific Organizations (project V.45.3.2). The authors are grateful to M.S. Mel’gunov, T.Ya. Efimenko, and T.A. Komnik for their assistance in catalyst testing and characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey A. Vedyagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedyagin, A.A., Volodin, A.M., Stoyanovskii, V.O. et al. Effect of Alumina Phase Transformation on Stability of Low-Loaded Pd-Rh Catalysts for CO Oxidation. Top Catal 60, 152–161 (2017). https://doi.org/10.1007/s11244-016-0726-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0726-4

Keywords

Navigation