Skip to main content
Log in

Electrochemical Promotion of Ir0.5Pt0.5O2/YSZ

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A high surface area, nanostructured bimetallic oxide catalyst, Ir0.5Pt0.5O2, deposited on YSZ was studied for the electrochemical promotion of ethylene oxidation. The catalyst was synthesized using the modified Adams fusion method and was characterized regarding its structure, morphology and specific surface area via XPS, XRD, HRTEM, SEM and BET. Regarding the performance for electrochemical promotion, it was found that the rate of ethylene oxidation can be enhanced significantly and in a strongly non-faradaic manner via positive potential application, exhibiting strongly electrophobic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion and metal-support interactions. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  2. Kotsionopoulos N, Bebelis S (2005) Electrochemical promotion of the oxidation of propane on Pt/YSZ and Rh/YSZ catalyst-electrodes. J Appl Electrochem 35:1253–1264

    Article  CAS  Google Scholar 

  3. Stoukides M, Vayenas CG (1981) The effect of electrochemical oxygen pumping on the rate and selectivity of ethylene oxidation on polycrystalline silver. J Catal 70:137–146

    Article  CAS  Google Scholar 

  4. Vernoux P, Lizarraga L, Tsampas MN, Sapountzi FM, De Lucas-Consuegra A, Valverde J-L, Souentie S, Vayenas CG, Tsiplakides D, Balomenou S, Baranova EA (2013) Ionically conducting ceramics as active catalyst supports. Chem Rev 113(10):8192–8260

    Article  CAS  Google Scholar 

  5. Tsiplakides D, Balomenou S (2009) Milestones and perspectives in electrochemically promoted catalysis. Catal Today 146(3–4):312–318

    Article  CAS  Google Scholar 

  6. Roche V, Revel R, Vernoux P (2010) Electrochemical promotion of YSZ monolith honeycomb for deep oxidation of methane. Catal Commun 11(13):1076–1080

    Article  CAS  Google Scholar 

  7. Kambolis A, Lizarraga L, Tsampas MN, Burel L, Rieu M, Viricelle JP, Vernoux P (2012) Electrochemical promotion of catalysis with highly dispersed Pt nanoparticles. Electrochem Commun 19:5–8

    Article  CAS  Google Scholar 

  8. Balomenou S, Tsiplakides D, Katsaounis A, Thiemann-Handler S, Cramer B, Foti G, Comninellis C, Vayenas CG (2004) Novel monolithic electrochemically promoted catalytic reactor for environmentally important reactions. Appl Catal B-Environ 52(3):181–196

    Article  CAS  Google Scholar 

  9. Varkaraki E, Nicole J, Plattner E, Comninellis C, Vayenas CG (1995) Electrochemical promotion of IrO2 catalyst for the gas phase combustion of ethylene. J Appl Electrochem 25:978–981

    CAS  Google Scholar 

  10. Nicole J, Comninellis C (1998) Electrochemical promotion of IrO2 catalyst activity for the gas phase combustion of ethylene. J Appl Electrochem 28:223–226

    Article  CAS  Google Scholar 

  11. Tsiplakides D, Nicole J, Vayenas CG, Comninellis C (1998) Work function and catalytic activity measurements of an IrO2 film deposited on YSZ subjected to in situ electrochemical promotion. J Electrochem Soc 145(3):905–908

    Article  CAS  Google Scholar 

  12. Wodiunig S, Bokeloh F, Nicole J, Comninellis C (1999) Electrochemical promotion of RuO2 catalyst dispersed on an yttria-stabilized zirconia monolith. Electrochem Solid St 2(6):281–283

    Article  CAS  Google Scholar 

  13. Wodiunig S, Comninellis C (1999) Electrochemical promotion of RuO2 catalysts for the gas phase combustion of C2H4. J Eur Ceram Soc 19:931–934

    Article  CAS  Google Scholar 

  14. Constantinou I, Bolzonella I, Pliangos C, Comninellis C, Vayenas CG (2005) Electrochemical promotion of RuO2 catalysts for the combustion of toluene and ethylene. Catal Lett 100(3–4):125–133

    Article  CAS  Google Scholar 

  15. Nicole J, Tsiplakides D, Pliangos C, Verykios XE, Comninellis C, Vayenas CG (2001) Electrochemical promotion and metal-support interactions. J Catal 204:23–34

    Article  CAS  Google Scholar 

  16. Vayenas CG, Archonta D, Tsiplakides D (2003) Scanning tunneling microscopy observation of the origin of electrochemical promotion and metal-support interactions. J Electroanal Chem 554:301–306

    Article  Google Scholar 

  17. Vayenas CG, Brosda S, Pliangos C (2003) The double-layer approach to promotion, electrocatalysis, electrochemical promotion, and metal-support interactions. J Catal 216(1–2):487–504

    Article  CAS  Google Scholar 

  18. Vayenas CG (2013) Promotion, electrochemical promotion and metal-support interactions: their common features. Catal Lett 143(11):1085–1097

    Article  CAS  Google Scholar 

  19. Adams R, Shriner RL (1923) Platinum oxide as a catalyst in the reduction of organic compounds. III. Preparation and properties of the oxide of platinum obtained by the fusion of chloroplatinic acid with sodium nitrate. J Am Chem Soc 45:2171–2179

    Article  CAS  Google Scholar 

  20. Papazisi KM, Siokou A, Balomenou S, Tsiplakides D (2012) Preparation and characterization of IrxPt1-xO2 anode electrocatalysts for the oxygen evolution reaction. Int J Hydrogen Energy 37:16642–16648

    Article  CAS  Google Scholar 

  21. Yao S, Wang M, Madou M (2001) A pH electrode based on melt-oxidized iridium oxide. J Electrochem Soc 148(4):H29–H36

    Article  CAS  Google Scholar 

  22. Chen RS, Chang HM, Huang YS, Tsai DS, Chattopadhyay S, Chen KH (2004) Growth and characterization of vertically aligned self-assembled IrO2 nanotubes on oxide substrates. J Cryst Growth 271(1–2):105–112

    Article  CAS  Google Scholar 

  23. Zhensheng J, Chanjuan X, Qingmei Z, Feng Y, Jiazheng Z, Jinzhen X (2003) Catalytic behavior of nanoparticle α-PtO2 for ethanol oxidation. J Mol Catal A: Chem 191(1):61–66

    Article  Google Scholar 

  24. Hegedus LL, Aris R, Bell AT, Boudart M, Chen NY, Gates BC, Haag WO, Somorjai GA, Wei J (1987) Catalyst design: progress and perspectives. Wiley, New York

    Google Scholar 

  25. Vayenas CG, Brosda S, Pliangos C (2001) Rules and mathematical modeling of electrochemical and chemical promotion: 1. Reaction classification and promotional rules. J Catal 203:329–350

    Article  CAS  Google Scholar 

  26. Brosda S, Vayenas CG (2002) Rules and mathematical modeling of electrochemical and classical promotion. 2 Modeling. J Catal 208:38–53

    Article  CAS  Google Scholar 

  27. Balomenou SP, Tsiplakides D, Katsaounis A, Brosda S, Hammad A, Foti G, Comninellis C, Thiemann-Handler S, Cramer B, Vayenas CG (2006) Monolithic electrochemically promoted reactors: a step for the practical utilization of electrochemical promotion. Solid State Ionics 177(26–32):2201–2204

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is co-financed by the EU-European Social Fund and the Greek Ministry of Education Lifelong learning and Religious Affairs—General Secretariat for Research and Technology, under the National Action: “Cooperation” (09SYN-42-729).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tsiplakides.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balomenou, S., Papazisi, K.M. & Tsiplakides, D. Electrochemical Promotion of Ir0.5Pt0.5O2/YSZ. Top Catal 58, 1270–1275 (2015). https://doi.org/10.1007/s11244-015-0496-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0496-4

Keywords

Navigation