Skip to main content
Log in

On the Structure Sensitivity of Dimethyl Ether Electro-oxidation on Eight FCC Metals: A First-Principles Study

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The electro-oxidation of dimethyl ether (DME) was investigated using periodic, self-consistent density functional theory (DFT) calculations on the (111) and (100) facets of eight fcc metals: Au, Ag, Cu, Pt, Pd, Ni, Ir, and Rh. The goal of this study is to understand the experimentally observed structure sensitivity of this reaction on Pt, and to predict trends in structure sensitivity of this reaction across the other seven metals studied. The main conclusion is that the enhanced activity of Pt(100) originates from more facile C–O bond breaking and removal of surface poisoning species, including CO and CH. When comparing C–O bond breaking energetics, we do not find a universal trend where these elementary steps are always more exergonic on the (100) facet. However, we find that, at a given potential, DME can be dehydrogenated (prior to breaking the C–O bond) to a greater extent on the (100) facet. Additionally, we find that the reaction energy for C–O bond breaking in CHxOCHy-type species becomes increasingly exergonic as the species becomes increasingly dehydrogenated. Together, the more facile dehydrogenation on the (100) facets provides more favorable routes to C–O bond activation. Though we calculate a lower onset potential on Au(100), Ag(100), Cu(100), Pt(100), and Pd(100) than their respective (111) facets, the calculated onset potential for Ni(100), Ir(100), and Rh(100) are actually higher than for their respective (111) facets. Finally, by constructing theoretical volcano plots, we conclude that Au(100), Ag(100), Cu(100), Pt(100), and Pd(100) should be more active than their respective (111) facets, while Ni(100), Rh(100), and Ir(100) will show the opposite trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Semelsberger TA, Borup RL, Greene HL (2006) Dimethyl ether (DME) as an alternative fuel. J Power Sources 156(2):497–511

    Article  CAS  Google Scholar 

  2. Floudas CA, Elia JA, Baliban RC (2012) Hybrid and single feedstock energy processes for liquid transportation fuels: a critical review. Comput Chem Eng 41:24–51

    Article  CAS  Google Scholar 

  3. Serov A, Kwak C (2009) Progress in development of direct dimethyl ether fuel cells. Appl Catal B 91(1–2):1–10

    Article  CAS  Google Scholar 

  4. Demirci UB (2007) Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J Power Sources 169(2):239–246

    Article  CAS  Google Scholar 

  5. Yoo JH, Choi HG, Chung CH, Cho SM (2006) Fuel cells using dimethyl ether. J Power Sources 163(1):103–106

    Article  CAS  Google Scholar 

  6. Yu RH, Choi HG, Cho SM (2005) Performance of direct dimethyl ether fuel cells at low temperature. Electrochem Commun 7(12):1385–1388

    Article  CAS  Google Scholar 

  7. Kerangueven G, Coutanceau C, Sibert E, Leger JM, Lamy C (2006) Methoxy methane (dimethyl ether) as an alternative fuel for direct fuel cells. J Power Sources 157(1):318–324

    Article  CAS  Google Scholar 

  8. Kerangueven G, Coutanceau C, Sibert E, Hahn F, Leger JM, Lamy C (2006) Mechanism of di(methyl)ether (DME) electrooxidation at platinum electrodes in acid medium. J Appl Electrochem 36(4):441–448

    Article  CAS  Google Scholar 

  9. Heinzel A, Barragan VM (1999) A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources 84(1):70–74

    Article  CAS  Google Scholar 

  10. Wasmus S, Kuver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461(1–2):14–31

    Article  CAS  Google Scholar 

  11. Mizutani I, Liu Y, Mitsushima S, Ota KI, Kamiya N (2006) Anode reaction mechanism and crossover in direct dimethyl ether fuel cell. J Power Sources 156(2):183–189

    Article  CAS  Google Scholar 

  12. Muller JT, Urban PM, Holderich WF, Colbow KM, Zhang J, Wilkinson DP (2000) Electro-oxidation of dimethyl ether in a polymer-electrolyte-membrane fuel cell. J Electrochem Soc 147(11):4058–4060

    Article  CAS  Google Scholar 

  13. Liu Y, Mitsushima S, Ota K, Kamiya N (2006) Electro-oxidation of dimethyl ether on Pt/C and PtMe/C catalysts in sulfuric acid. Electrochim Acta 51(28):6503–6509

    Article  CAS  Google Scholar 

  14. Lu LL, Yin GP, Tong YJ, Zhang Y, Gao YZ, Osawa M, Ye S (2008) Electrochemical behaviors of dimethyl ether on platinum single crystal electrodes. Part I: Pt(111). J Electroanal Chem 619:143–151

    Article  Google Scholar 

  15. Lu LL, Yin GP, Tong YJ, Zhang Y, Gao YZ, Osawa M, Ye S (2010) Electrochemical behaviors of dimethyl ether on platinum single crystal electrodes. Part II: Pt(100). J Electroanal Chem 642(1):82–91

    Article  CAS  Google Scholar 

  16. Tong Y, Lu L, Zhang Y, Gao Y, Yin G, Osawa M, Ye S (2007) Surface structure dependent electro-oxidation of dimethyl ether on platinum single-crystal electrodes. J Phys Chem C 111(51):18836–18838

    Article  CAS  Google Scholar 

  17. Koper MTM (2011) Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3(5):2054–2073

    Article  CAS  Google Scholar 

  18. Lu LL, Yin GP, Wang ZB, Gao YZ (2009) Electro-oxidation of dimethyl ether on platinum nanocubes with preferential 100 surfaces. Electrochem Commun 11(8):1596–1598

    Article  CAS  Google Scholar 

  19. Herron JA, Ferrin P, Mavrikakis M (2014) First-principles mechanistic analysis of dimethyl ether electro-oxidation on monometallic single-crystal surfaces. J Phys Chem C 118(42):24199–24211

    Article  CAS  Google Scholar 

  20. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B 59(11):7413–7421

    Article  Google Scholar 

  21. Greeley J, Nørskov JK, Mavrikakis M (2002) Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem 53:319–348

    Article  CAS  Google Scholar 

  22. Ferrin P, Mavrikakis M (2009) Structure sensitivity of methanol electrooxidation on transition metals. J Am Chem Soc 131(40):14381–14389

    Article  CAS  Google Scholar 

  23. Ferrin P, Nilekar AU, Greeley J, Mavrikakis M, Rossmeisl J (2008) Reactivity descriptors for direct methanol fuel cell anode catalysts. Surf Sci 602(21):3424–3431

    Article  CAS  Google Scholar 

  24. Greeley J, Mavrikakis M (2002) A first-principles study of methanol decomposition on Pt(111). J Am Chem Soc 124(24):7193–7201

    Article  CAS  Google Scholar 

  25. Greeley J, Mavrikakis M (2004) Competitive paths for methanol decomposition on Pt(111). J Am Chem Soc 126(12):3910–3919

    Article  CAS  Google Scholar 

  26. CRC (2011) Handbook of chemistry and physics, 92nd edn. CRC Press, New York

    Google Scholar 

  27. Bengtsson L (1999) Dipole correction for surface supercell calculations. Phys Rev B 59(19):12301–12304

    Article  CAS  Google Scholar 

  28. Neugebauer J, Scheffler M (1992) Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys Rev B 46(24):16067–16080

    Article  CAS  Google Scholar 

  29. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895

    Article  Google Scholar 

  30. Chadi DJ, Cohen ML (1973) Special points in Brillouin zone. Phys Rev B 8(12):5747–5753

    Article  Google Scholar 

  31. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192

    Article  Google Scholar 

  32. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces—applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671–6687

    Article  CAS  Google Scholar 

  33. Greeley J, Mavrikakis M (2003) A first-principles study of surface and subsurface H on and in Ni(111): diffusional properties and coverage-dependent behavior. Surf Sci 540(2–3):215–229

    Article  CAS  Google Scholar 

  34. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607(1–2):83–89

    Article  CAS  Google Scholar 

  35. Rossmeisl J, Logadottir A, Nørskov JK (2005) Electrolysis of water on (oxidized) metal surfaces. Chem Phys 319(1–3):178–184

    Article  CAS  Google Scholar 

  36. Karlberg GS, Rossmeisl J, Nørskov JK (2007) Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. Phys Chem Chem Phys 9(37):5158–5161

    Article  CAS  Google Scholar 

  37. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892

    Article  Google Scholar 

  38. Herron JA, Ferrin P, Mavrikakis M (2015) Electrocatalytic oxidation of ammonia on transition-metal surfaces: a first-principles study. J Phys Chem C 119(26):14692–14701

    Article  CAS  Google Scholar 

  39. Logadottir A, Rod TH, Nørskov JK, Hammer B, Dahl S, Jacobsen CJH (2001) The Bronsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J Catal 197(2):229–231

    Article  CAS  Google Scholar 

  40. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) Universality in heterogeneous catalysis. J Catal 209(2):275–278

    Article  Google Scholar 

  41. Ojeda M, Nabar R, Nilekar AU, Ishikawa A, Mavrikakis M, Iglesia E (2010) CO activation pathways and the mechanism of Fischer–Tropsch synthesis. J Catal 272(2):287–297

    Article  CAS  Google Scholar 

  42. Grabow LC, Hvolbaek B, Nørskov JK (2010) Understanding trends in catalytic activity: the effect of adsorbate–adsorbate interactions for CO oxidation over transition metals. Top Catal 53(5–6):298–310

    Article  CAS  Google Scholar 

  43. Miller SD, Inoglu N, Kitchin JR (2011) Configurational correlations in the coverage dependent adsorption energies of oxygen atoms on late transition metal fcc(111) surfaces. J Chem Phys 134(10):104709

    Article  Google Scholar 

  44. Wu C, Schmidt DJ, Wolverton C, Schneider WF (2012) Accurate coverage-dependence incorporated into first-principles kinetic models: catalytic NO oxidation on Pt (111). J Catal 286:88–94

    Article  CAS  Google Scholar 

  45. Getman RB, Xu Y, Schneider WF (2008) Thermodynamics of environment-dependent oxygen chemisorption on Pt(111). J Phys Chem C 112(26):9559–9572

    Article  CAS  Google Scholar 

  46. Desai S, Neurock M (2003) A first principles analysis of CO oxidation over Pt and Pt66.7%Ru33.3% (111) surfaces. Electrochim Acta 48(25–26):3759–3773

    Article  CAS  Google Scholar 

  47. Koper MTM (2005) Combining experiment and theory for understanding electrocatalysis. J Electroanal Chem 574(2):375–386

    Article  CAS  Google Scholar 

  48. Lew WD, Crowe MC, Karp E, Campbell CT (2011) Energy of molecularly adsorbed water on clean Pt(111) and Pt(111) with coadsorbed oxygen by calorimetry. J Phys Chem C 115(18):9164–9170

    Article  CAS  Google Scholar 

  49. Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson LGM, Nilsson A (2002) Structure and bonding of water on Pt(111). Phys Rev Lett 89(27):276102

    Article  CAS  Google Scholar 

  50. Rossmeisl J, Greeley J, Karlberg GS (2008) Electrocatalysis and catalyst screening from density functional theory calculations. In: Koper MTM (ed) Fuel cell catalysis: a surface science approach. Wiley, Hoboken

    Google Scholar 

  51. Mistry H, Reske R, Zeng ZH, Zhao ZJ, Greeley J, Strasser P, Cuenya BR (2014) Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc 136(47):16473–16476

    Article  CAS  Google Scholar 

  52. Karamad M, Tripkovic V, Rossmeisl J (2014) Intermetallic alloys as CO electroreduction catalysts—role of isolated active sites. ACS Catal 4(7):2268–2273

    Article  CAS  Google Scholar 

  53. Van Santen RA (2009) Complementary structure sensitive and insensitive catalytic relationships. Acc Chem Res 42(1):57–66

    Article  Google Scholar 

  54. Ciobica IM, van Santen RA (2003) Carbon monoxide dissociation on planar and stepped Ru(0001) surfaces. J Phys Chem B 107(16):3808–3812

    Article  CAS  Google Scholar 

  55. Andersson MP, Abild-Pedersen E, Remediakis IN, Bligaard T, Jones G, Engbwk J, Lytken O, Horch S, Nielsen JH, Sehested J, Rostrup-Nielsen JR, Nørskov JK, Chorkendorff I (2008) Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces. J Catal 255(1):6–19

    Article  CAS  Google Scholar 

  56. Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Tornqvist E, Nørskov JK (1999) Role of steps in N2 activation on Ru(0001). Phys Rev Lett 83(9):1814–1817

    Article  Google Scholar 

  57. Spencer ND, Schoonmaker RC, Somorjai GA (1982) Iron single-crystals as ammonia-synthesis catalysts—effect of surface-structure on catalyst activity. J Catal 74(1):129–135

    Article  CAS  Google Scholar 

  58. Loffreda D, Simon D, Sautet P (2003) Structure sensitivity for NO dissociation on palladium and rhodium surfaces. J Catal 213(2):211–225

    Article  CAS  Google Scholar 

  59. Ge Q, Neurock M (2004) Structure dependence of NO adsorption and dissociation on platinum surfaces. J Am Chem Soc 126(5):1551–1559

    Article  CAS  Google Scholar 

  60. Liu ZP, Hu P (2003) General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C–O bond breaking/making on flat, stepped, and kinked metal surfaces. J Am Chem Soc 125(7):1958–1967

    Article  CAS  Google Scholar 

  61. Koper MTM (2011) Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J Electroanal Chem 660(2):254–260

    Article  CAS  Google Scholar 

  62. Li HJ, Calle-Vallejo F, Kolb MJ, Kwon Y, Li YD, Koper MTM (2013) Why (100) terraces break and make bonds: oxidation of dimethyl ether on platinum single-crystal electrodes. J Am Chem Soc 135(38):14329–14338

    Article  CAS  Google Scholar 

  63. Li HJ, Li YD, Koper MTM, Calle-Vallejo F (2014) Bond-making and breaking between carbon, nitrogen, and oxygen in electrocatalysis. J Am Chem Soc 136(44):15694–15701

    Article  CAS  Google Scholar 

  64. Lebedeva NP, Rodes A, Feliu JM, Koper MTM, van Santen RA (2002) Role of crystalline defects in electrocatalysis: CO adsorption and oxidation on stepped platinum electrodes as studied by in situ infrared spectroscopy. J Phys Chem B 106(38):9863–9872

    Article  CAS  Google Scholar 

  65. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skulason E, Bligaard T, Nørskov JK (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99(1):016105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Prof. Vayenas has inspired many colleagues in the field of electrocatalysis, including these authors. We wish him the best on the occasion of his 65th birthday. This work was supported by DOE-BES, Office of Chemical Sciences. JAH thanks Air Products & Chemicals, Inc. for partial support through a graduate fellowship. Computational work was performed in part using supercomputing resources at the following institutions: EMSL, a National scientific user facility at Pacific Northwest National Laboratory (PNNL); the Center for Nanoscale Materials at Argonne National Laboratory (ANL); and the National Energy Research Scientific Computing Center (NERSC). EMSL is sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL. CNM, and NERSC are supported by the U.S. Department of Energy, Office of Science, under contracts DE-AC02-06CH11357, and DE-AC02-05CH11231, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manos Mavrikakis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herron, J.A., Ferrin, P. & Mavrikakis, M. On the Structure Sensitivity of Dimethyl Ether Electro-oxidation on Eight FCC Metals: A First-Principles Study. Top Catal 58, 1159–1173 (2015). https://doi.org/10.1007/s11244-015-0495-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0495-5

Keywords

Navigation